Spaces:
Running
Running
| # coding=utf-8 | |
| # Copyright 2024 the LlamaFactory team. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import json | |
| import os | |
| from collections import OrderedDict | |
| from typing import Any, Dict, Optional | |
| import fire | |
| import torch | |
| from safetensors.torch import save_file | |
| from tqdm import tqdm | |
| from transformers.modeling_utils import ( | |
| SAFE_WEIGHTS_INDEX_NAME, | |
| SAFE_WEIGHTS_NAME, | |
| WEIGHTS_INDEX_NAME, | |
| WEIGHTS_NAME, | |
| shard_checkpoint, | |
| ) | |
| CONFIG_NAME = "config.json" | |
| def save_weight(input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool): | |
| baichuan2_state_dict: Dict[str, torch.Tensor] = OrderedDict() | |
| for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): | |
| if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): | |
| shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") | |
| baichuan2_state_dict.update(shard_weight) | |
| llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() | |
| for key, value in tqdm(baichuan2_state_dict.items(), desc="Convert format"): | |
| if "W_pack" in key: | |
| proj_size = value.size(0) // 3 | |
| llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:proj_size, :] | |
| llama2_state_dict[key.replace("W_pack", "k_proj")] = value[proj_size : 2 * proj_size, :] | |
| llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2 * proj_size :, :] | |
| elif "lm_head" in key: | |
| llama2_state_dict[key] = torch.nn.functional.normalize(value) | |
| else: | |
| llama2_state_dict[key] = value | |
| weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME | |
| shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name) | |
| for shard_file, shard in tqdm(shards.items(), desc="Save weights"): | |
| if save_safetensors: | |
| save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) | |
| else: | |
| torch.save(shard, os.path.join(output_dir, shard_file)) | |
| if index is None: | |
| print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME))) | |
| else: | |
| index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME | |
| with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: | |
| json.dump(index, f, indent=2, sort_keys=True) | |
| print("Model weights saved in {}".format(output_dir)) | |
| def save_config(input_dir: str, output_dir: str): | |
| with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: | |
| llama2_config_dict: Dict[str, Any] = json.load(f) | |
| llama2_config_dict["architectures"] = ["LlamaForCausalLM"] | |
| llama2_config_dict.pop("auto_map", None) | |
| llama2_config_dict.pop("tokenizer_class", None) | |
| llama2_config_dict["model_type"] = "llama" | |
| with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: | |
| json.dump(llama2_config_dict, f, indent=2) | |
| print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) | |
| def llamafy_baichuan2( | |
| input_dir: str, output_dir: str, shard_size: Optional[str] = "2GB", save_safetensors: Optional[bool] = False | |
| ): | |
| r""" | |
| Converts the Baichuan2-7B model in the same format as LLaMA2-7B. | |
| Usage: python llamafy_baichuan2.py --input_dir input --output_dir output | |
| Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied | |
| """ | |
| try: | |
| os.makedirs(output_dir, exist_ok=False) | |
| except Exception as e: | |
| raise print("Output dir already exists", e) | |
| save_weight(input_dir, output_dir, shard_size, save_safetensors) | |
| save_config(input_dir, output_dir) | |
| if __name__ == "__main__": | |
| fire.Fire(llamafy_baichuan2) | |