Spaces:
Runtime error
Runtime error
init
Browse files- .DS_Store +0 -0
- .gitattributes +3 -0
- Untitled.ipynb +509 -0
- app.py +116 -0
- data/.DS_Store +0 -0
- data/parameters.pkl +3 -0
- data/test_data.pkl +3 -0
- model/.DS_Store +0 -0
- model/tft_check.ckpt +3 -0
- requirements.txt +109 -0
.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
data/parameters.pkl filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
data/test_data.pkl filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
model/tft_check.ckpt filter=lfs diff=lfs merge=lfs -text
|
Untitled.ipynb
ADDED
|
@@ -0,0 +1,509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 18,
|
| 6 |
+
"id": "40d0c64c-1de1-47ed-aa66-7b28d9e8fd1f",
|
| 7 |
+
"metadata": {},
|
| 8 |
+
"outputs": [],
|
| 9 |
+
"source": [
|
| 10 |
+
"import pickle \n",
|
| 11 |
+
"import pandas as pd \n",
|
| 12 |
+
"import datetime"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "code",
|
| 17 |
+
"execution_count": 13,
|
| 18 |
+
"id": "5043d237-0287-4705-bfd5-73b880b36def",
|
| 19 |
+
"metadata": {},
|
| 20 |
+
"outputs": [],
|
| 21 |
+
"source": [
|
| 22 |
+
"df = pd.read_pickle('data/test_data.pkl')\n",
|
| 23 |
+
"df = df.loc[(df[\"Branch\"] == \"15\") & (df[\"Group\"].isin([\"6\",\"7\",\"4\",\"1\"]))]"
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"cell_type": "code",
|
| 28 |
+
"execution_count": 14,
|
| 29 |
+
"id": "dce8096f-23d4-4075-8654-6693632c45bc",
|
| 30 |
+
"metadata": {},
|
| 31 |
+
"outputs": [
|
| 32 |
+
{
|
| 33 |
+
"data": {
|
| 34 |
+
"text/html": [
|
| 35 |
+
"<div>\n",
|
| 36 |
+
"<style scoped>\n",
|
| 37 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 38 |
+
" vertical-align: middle;\n",
|
| 39 |
+
" }\n",
|
| 40 |
+
"\n",
|
| 41 |
+
" .dataframe tbody tr th {\n",
|
| 42 |
+
" vertical-align: top;\n",
|
| 43 |
+
" }\n",
|
| 44 |
+
"\n",
|
| 45 |
+
" .dataframe thead th {\n",
|
| 46 |
+
" text-align: right;\n",
|
| 47 |
+
" }\n",
|
| 48 |
+
"</style>\n",
|
| 49 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 50 |
+
" <thead>\n",
|
| 51 |
+
" <tr style=\"text-align: right;\">\n",
|
| 52 |
+
" <th></th>\n",
|
| 53 |
+
" <th>sales</th>\n",
|
| 54 |
+
" <th>DayInYear</th>\n",
|
| 55 |
+
" <th>time_idx</th>\n",
|
| 56 |
+
" <th>Wahl</th>\n",
|
| 57 |
+
" <th>Baustelle</th>\n",
|
| 58 |
+
" <th>MontagLangesWE</th>\n",
|
| 59 |
+
" <th>FreitagLangesWE</th>\n",
|
| 60 |
+
" <th>nosale</th>\n",
|
| 61 |
+
" <th>holiday</th>\n",
|
| 62 |
+
" <th>AufSommerzeit</th>\n",
|
| 63 |
+
" <th>...</th>\n",
|
| 64 |
+
" <th>Branch</th>\n",
|
| 65 |
+
" <th>Weekday</th>\n",
|
| 66 |
+
" <th>Date</th>\n",
|
| 67 |
+
" <th>MTXWTH_Day_precip</th>\n",
|
| 68 |
+
" <th>MTXWTH_Temp_max</th>\n",
|
| 69 |
+
" <th>MTXWTH_Temp_min</th>\n",
|
| 70 |
+
" <th>Start</th>\n",
|
| 71 |
+
" <th>End</th>\n",
|
| 72 |
+
" <th>ShiftLength</th>\n",
|
| 73 |
+
" <th>weight</th>\n",
|
| 74 |
+
" </tr>\n",
|
| 75 |
+
" </thead>\n",
|
| 76 |
+
" <tbody>\n",
|
| 77 |
+
" <tr>\n",
|
| 78 |
+
" <th>270300</th>\n",
|
| 79 |
+
" <td>1600.9030</td>\n",
|
| 80 |
+
" <td>177</td>\n",
|
| 81 |
+
" <td>2369</td>\n",
|
| 82 |
+
" <td>0.0</td>\n",
|
| 83 |
+
" <td>0.0</td>\n",
|
| 84 |
+
" <td>0.0</td>\n",
|
| 85 |
+
" <td>0.0</td>\n",
|
| 86 |
+
" <td>0</td>\n",
|
| 87 |
+
" <td>none</td>\n",
|
| 88 |
+
" <td>0.0</td>\n",
|
| 89 |
+
" <td>...</td>\n",
|
| 90 |
+
" <td>15</td>\n",
|
| 91 |
+
" <td>6</td>\n",
|
| 92 |
+
" <td>2022-06-26</td>\n",
|
| 93 |
+
" <td>0.0</td>\n",
|
| 94 |
+
" <td>28.52</td>\n",
|
| 95 |
+
" <td>17.47</td>\n",
|
| 96 |
+
" <td>7.0</td>\n",
|
| 97 |
+
" <td>10.983333</td>\n",
|
| 98 |
+
" <td>240.0</td>\n",
|
| 99 |
+
" <td>1</td>\n",
|
| 100 |
+
" </tr>\n",
|
| 101 |
+
" <tr>\n",
|
| 102 |
+
" <th>270301</th>\n",
|
| 103 |
+
" <td>1811.1958</td>\n",
|
| 104 |
+
" <td>178</td>\n",
|
| 105 |
+
" <td>2370</td>\n",
|
| 106 |
+
" <td>0.0</td>\n",
|
| 107 |
+
" <td>0.0</td>\n",
|
| 108 |
+
" <td>0.0</td>\n",
|
| 109 |
+
" <td>0.0</td>\n",
|
| 110 |
+
" <td>0</td>\n",
|
| 111 |
+
" <td>none</td>\n",
|
| 112 |
+
" <td>0.0</td>\n",
|
| 113 |
+
" <td>...</td>\n",
|
| 114 |
+
" <td>15</td>\n",
|
| 115 |
+
" <td>0</td>\n",
|
| 116 |
+
" <td>2022-06-27</td>\n",
|
| 117 |
+
" <td>0.0</td>\n",
|
| 118 |
+
" <td>25.75</td>\n",
|
| 119 |
+
" <td>16.70</td>\n",
|
| 120 |
+
" <td>6.0</td>\n",
|
| 121 |
+
" <td>13.983333</td>\n",
|
| 122 |
+
" <td>480.0</td>\n",
|
| 123 |
+
" <td>1</td>\n",
|
| 124 |
+
" </tr>\n",
|
| 125 |
+
" <tr>\n",
|
| 126 |
+
" <th>270302</th>\n",
|
| 127 |
+
" <td>1784.2916</td>\n",
|
| 128 |
+
" <td>179</td>\n",
|
| 129 |
+
" <td>2371</td>\n",
|
| 130 |
+
" <td>0.0</td>\n",
|
| 131 |
+
" <td>0.0</td>\n",
|
| 132 |
+
" <td>0.0</td>\n",
|
| 133 |
+
" <td>0.0</td>\n",
|
| 134 |
+
" <td>0</td>\n",
|
| 135 |
+
" <td>none</td>\n",
|
| 136 |
+
" <td>0.0</td>\n",
|
| 137 |
+
" <td>...</td>\n",
|
| 138 |
+
" <td>15</td>\n",
|
| 139 |
+
" <td>1</td>\n",
|
| 140 |
+
" <td>2022-06-28</td>\n",
|
| 141 |
+
" <td>0.0</td>\n",
|
| 142 |
+
" <td>23.57</td>\n",
|
| 143 |
+
" <td>14.17</td>\n",
|
| 144 |
+
" <td>6.0</td>\n",
|
| 145 |
+
" <td>13.983333</td>\n",
|
| 146 |
+
" <td>480.0</td>\n",
|
| 147 |
+
" <td>1</td>\n",
|
| 148 |
+
" </tr>\n",
|
| 149 |
+
" <tr>\n",
|
| 150 |
+
" <th>270303</th>\n",
|
| 151 |
+
" <td>1757.3488</td>\n",
|
| 152 |
+
" <td>180</td>\n",
|
| 153 |
+
" <td>2372</td>\n",
|
| 154 |
+
" <td>0.0</td>\n",
|
| 155 |
+
" <td>0.0</td>\n",
|
| 156 |
+
" <td>0.0</td>\n",
|
| 157 |
+
" <td>0.0</td>\n",
|
| 158 |
+
" <td>0</td>\n",
|
| 159 |
+
" <td>none</td>\n",
|
| 160 |
+
" <td>0.0</td>\n",
|
| 161 |
+
" <td>...</td>\n",
|
| 162 |
+
" <td>15</td>\n",
|
| 163 |
+
" <td>2</td>\n",
|
| 164 |
+
" <td>2022-06-29</td>\n",
|
| 165 |
+
" <td>0.0</td>\n",
|
| 166 |
+
" <td>26.81</td>\n",
|
| 167 |
+
" <td>13.09</td>\n",
|
| 168 |
+
" <td>6.0</td>\n",
|
| 169 |
+
" <td>13.983333</td>\n",
|
| 170 |
+
" <td>480.0</td>\n",
|
| 171 |
+
" <td>1</td>\n",
|
| 172 |
+
" </tr>\n",
|
| 173 |
+
" <tr>\n",
|
| 174 |
+
" <th>270304</th>\n",
|
| 175 |
+
" <td>1741.0982</td>\n",
|
| 176 |
+
" <td>181</td>\n",
|
| 177 |
+
" <td>2373</td>\n",
|
| 178 |
+
" <td>0.0</td>\n",
|
| 179 |
+
" <td>0.0</td>\n",
|
| 180 |
+
" <td>0.0</td>\n",
|
| 181 |
+
" <td>0.0</td>\n",
|
| 182 |
+
" <td>0</td>\n",
|
| 183 |
+
" <td>none</td>\n",
|
| 184 |
+
" <td>0.0</td>\n",
|
| 185 |
+
" <td>...</td>\n",
|
| 186 |
+
" <td>15</td>\n",
|
| 187 |
+
" <td>3</td>\n",
|
| 188 |
+
" <td>2022-06-30</td>\n",
|
| 189 |
+
" <td>0.0</td>\n",
|
| 190 |
+
" <td>27.26</td>\n",
|
| 191 |
+
" <td>15.00</td>\n",
|
| 192 |
+
" <td>6.0</td>\n",
|
| 193 |
+
" <td>13.983333</td>\n",
|
| 194 |
+
" <td>480.0</td>\n",
|
| 195 |
+
" <td>1</td>\n",
|
| 196 |
+
" </tr>\n",
|
| 197 |
+
" <tr>\n",
|
| 198 |
+
" <th>...</th>\n",
|
| 199 |
+
" <td>...</td>\n",
|
| 200 |
+
" <td>...</td>\n",
|
| 201 |
+
" <td>...</td>\n",
|
| 202 |
+
" <td>...</td>\n",
|
| 203 |
+
" <td>...</td>\n",
|
| 204 |
+
" <td>...</td>\n",
|
| 205 |
+
" <td>...</td>\n",
|
| 206 |
+
" <td>...</td>\n",
|
| 207 |
+
" <td>...</td>\n",
|
| 208 |
+
" <td>...</td>\n",
|
| 209 |
+
" <td>...</td>\n",
|
| 210 |
+
" <td>...</td>\n",
|
| 211 |
+
" <td>...</td>\n",
|
| 212 |
+
" <td>...</td>\n",
|
| 213 |
+
" <td>...</td>\n",
|
| 214 |
+
" <td>...</td>\n",
|
| 215 |
+
" <td>...</td>\n",
|
| 216 |
+
" <td>...</td>\n",
|
| 217 |
+
" <td>...</td>\n",
|
| 218 |
+
" <td>...</td>\n",
|
| 219 |
+
" <td>...</td>\n",
|
| 220 |
+
" </tr>\n",
|
| 221 |
+
" <tr>\n",
|
| 222 |
+
" <th>287065</th>\n",
|
| 223 |
+
" <td>1643.1700</td>\n",
|
| 224 |
+
" <td>173</td>\n",
|
| 225 |
+
" <td>2730</td>\n",
|
| 226 |
+
" <td>0.0</td>\n",
|
| 227 |
+
" <td>0.0</td>\n",
|
| 228 |
+
" <td>0.0</td>\n",
|
| 229 |
+
" <td>0.0</td>\n",
|
| 230 |
+
" <td>0</td>\n",
|
| 231 |
+
" <td>none</td>\n",
|
| 232 |
+
" <td>0.0</td>\n",
|
| 233 |
+
" <td>...</td>\n",
|
| 234 |
+
" <td>15</td>\n",
|
| 235 |
+
" <td>3</td>\n",
|
| 236 |
+
" <td>2023-06-22</td>\n",
|
| 237 |
+
" <td>0.0</td>\n",
|
| 238 |
+
" <td>26.93</td>\n",
|
| 239 |
+
" <td>13.06</td>\n",
|
| 240 |
+
" <td>6.0</td>\n",
|
| 241 |
+
" <td>16.983333</td>\n",
|
| 242 |
+
" <td>660.0</td>\n",
|
| 243 |
+
" <td>1</td>\n",
|
| 244 |
+
" </tr>\n",
|
| 245 |
+
" <tr>\n",
|
| 246 |
+
" <th>287066</th>\n",
|
| 247 |
+
" <td>1597.3518</td>\n",
|
| 248 |
+
" <td>174</td>\n",
|
| 249 |
+
" <td>2731</td>\n",
|
| 250 |
+
" <td>0.0</td>\n",
|
| 251 |
+
" <td>0.0</td>\n",
|
| 252 |
+
" <td>0.0</td>\n",
|
| 253 |
+
" <td>0.0</td>\n",
|
| 254 |
+
" <td>0</td>\n",
|
| 255 |
+
" <td>none</td>\n",
|
| 256 |
+
" <td>0.0</td>\n",
|
| 257 |
+
" <td>...</td>\n",
|
| 258 |
+
" <td>15</td>\n",
|
| 259 |
+
" <td>4</td>\n",
|
| 260 |
+
" <td>2023-06-23</td>\n",
|
| 261 |
+
" <td>1.0</td>\n",
|
| 262 |
+
" <td>23.99</td>\n",
|
| 263 |
+
" <td>15.98</td>\n",
|
| 264 |
+
" <td>6.0</td>\n",
|
| 265 |
+
" <td>16.983333</td>\n",
|
| 266 |
+
" <td>660.0</td>\n",
|
| 267 |
+
" <td>1</td>\n",
|
| 268 |
+
" </tr>\n",
|
| 269 |
+
" <tr>\n",
|
| 270 |
+
" <th>287067</th>\n",
|
| 271 |
+
" <td>1683.6228</td>\n",
|
| 272 |
+
" <td>175</td>\n",
|
| 273 |
+
" <td>2732</td>\n",
|
| 274 |
+
" <td>0.0</td>\n",
|
| 275 |
+
" <td>0.0</td>\n",
|
| 276 |
+
" <td>0.0</td>\n",
|
| 277 |
+
" <td>0.0</td>\n",
|
| 278 |
+
" <td>0</td>\n",
|
| 279 |
+
" <td>none</td>\n",
|
| 280 |
+
" <td>0.0</td>\n",
|
| 281 |
+
" <td>...</td>\n",
|
| 282 |
+
" <td>15</td>\n",
|
| 283 |
+
" <td>5</td>\n",
|
| 284 |
+
" <td>2023-06-24</td>\n",
|
| 285 |
+
" <td>0.0</td>\n",
|
| 286 |
+
" <td>25.99</td>\n",
|
| 287 |
+
" <td>12.04</td>\n",
|
| 288 |
+
" <td>6.0</td>\n",
|
| 289 |
+
" <td>15.983333</td>\n",
|
| 290 |
+
" <td>600.0</td>\n",
|
| 291 |
+
" <td>1</td>\n",
|
| 292 |
+
" </tr>\n",
|
| 293 |
+
" <tr>\n",
|
| 294 |
+
" <th>287068</th>\n",
|
| 295 |
+
" <td>1785.2180</td>\n",
|
| 296 |
+
" <td>176</td>\n",
|
| 297 |
+
" <td>2733</td>\n",
|
| 298 |
+
" <td>0.0</td>\n",
|
| 299 |
+
" <td>0.0</td>\n",
|
| 300 |
+
" <td>0.0</td>\n",
|
| 301 |
+
" <td>0.0</td>\n",
|
| 302 |
+
" <td>0</td>\n",
|
| 303 |
+
" <td>none</td>\n",
|
| 304 |
+
" <td>0.0</td>\n",
|
| 305 |
+
" <td>...</td>\n",
|
| 306 |
+
" <td>15</td>\n",
|
| 307 |
+
" <td>6</td>\n",
|
| 308 |
+
" <td>2023-06-25</td>\n",
|
| 309 |
+
" <td>0.0</td>\n",
|
| 310 |
+
" <td>28.99</td>\n",
|
| 311 |
+
" <td>15.02</td>\n",
|
| 312 |
+
" <td>7.0</td>\n",
|
| 313 |
+
" <td>15.983333</td>\n",
|
| 314 |
+
" <td>540.0</td>\n",
|
| 315 |
+
" <td>1</td>\n",
|
| 316 |
+
" </tr>\n",
|
| 317 |
+
" <tr>\n",
|
| 318 |
+
" <th>287069</th>\n",
|
| 319 |
+
" <td>1589.9020</td>\n",
|
| 320 |
+
" <td>177</td>\n",
|
| 321 |
+
" <td>2734</td>\n",
|
| 322 |
+
" <td>0.0</td>\n",
|
| 323 |
+
" <td>0.0</td>\n",
|
| 324 |
+
" <td>0.0</td>\n",
|
| 325 |
+
" <td>0.0</td>\n",
|
| 326 |
+
" <td>0</td>\n",
|
| 327 |
+
" <td>none</td>\n",
|
| 328 |
+
" <td>0.0</td>\n",
|
| 329 |
+
" <td>...</td>\n",
|
| 330 |
+
" <td>15</td>\n",
|
| 331 |
+
" <td>0</td>\n",
|
| 332 |
+
" <td>2023-06-26</td>\n",
|
| 333 |
+
" <td>0.0</td>\n",
|
| 334 |
+
" <td>27.96</td>\n",
|
| 335 |
+
" <td>17.01</td>\n",
|
| 336 |
+
" <td>6.0</td>\n",
|
| 337 |
+
" <td>16.983333</td>\n",
|
| 338 |
+
" <td>660.0</td>\n",
|
| 339 |
+
" <td>1</td>\n",
|
| 340 |
+
" </tr>\n",
|
| 341 |
+
" </tbody>\n",
|
| 342 |
+
"</table>\n",
|
| 343 |
+
"<p>1464 rows × 22 columns</p>\n",
|
| 344 |
+
"</div>"
|
| 345 |
+
],
|
| 346 |
+
"text/plain": [
|
| 347 |
+
" sales DayInYear time_idx Wahl Baustelle MontagLangesWE \\\n",
|
| 348 |
+
"270300 1600.9030 177 2369 0.0 0.0 0.0 \n",
|
| 349 |
+
"270301 1811.1958 178 2370 0.0 0.0 0.0 \n",
|
| 350 |
+
"270302 1784.2916 179 2371 0.0 0.0 0.0 \n",
|
| 351 |
+
"270303 1757.3488 180 2372 0.0 0.0 0.0 \n",
|
| 352 |
+
"270304 1741.0982 181 2373 0.0 0.0 0.0 \n",
|
| 353 |
+
"... ... ... ... ... ... ... \n",
|
| 354 |
+
"287065 1643.1700 173 2730 0.0 0.0 0.0 \n",
|
| 355 |
+
"287066 1597.3518 174 2731 0.0 0.0 0.0 \n",
|
| 356 |
+
"287067 1683.6228 175 2732 0.0 0.0 0.0 \n",
|
| 357 |
+
"287068 1785.2180 176 2733 0.0 0.0 0.0 \n",
|
| 358 |
+
"287069 1589.9020 177 2734 0.0 0.0 0.0 \n",
|
| 359 |
+
"\n",
|
| 360 |
+
" FreitagLangesWE nosale holiday AufSommerzeit ... Branch Weekday \\\n",
|
| 361 |
+
"270300 0.0 0 none 0.0 ... 15 6 \n",
|
| 362 |
+
"270301 0.0 0 none 0.0 ... 15 0 \n",
|
| 363 |
+
"270302 0.0 0 none 0.0 ... 15 1 \n",
|
| 364 |
+
"270303 0.0 0 none 0.0 ... 15 2 \n",
|
| 365 |
+
"270304 0.0 0 none 0.0 ... 15 3 \n",
|
| 366 |
+
"... ... ... ... ... ... ... ... \n",
|
| 367 |
+
"287065 0.0 0 none 0.0 ... 15 3 \n",
|
| 368 |
+
"287066 0.0 0 none 0.0 ... 15 4 \n",
|
| 369 |
+
"287067 0.0 0 none 0.0 ... 15 5 \n",
|
| 370 |
+
"287068 0.0 0 none 0.0 ... 15 6 \n",
|
| 371 |
+
"287069 0.0 0 none 0.0 ... 15 0 \n",
|
| 372 |
+
"\n",
|
| 373 |
+
" Date MTXWTH_Day_precip MTXWTH_Temp_max MTXWTH_Temp_min Start \\\n",
|
| 374 |
+
"270300 2022-06-26 0.0 28.52 17.47 7.0 \n",
|
| 375 |
+
"270301 2022-06-27 0.0 25.75 16.70 6.0 \n",
|
| 376 |
+
"270302 2022-06-28 0.0 23.57 14.17 6.0 \n",
|
| 377 |
+
"270303 2022-06-29 0.0 26.81 13.09 6.0 \n",
|
| 378 |
+
"270304 2022-06-30 0.0 27.26 15.00 6.0 \n",
|
| 379 |
+
"... ... ... ... ... ... \n",
|
| 380 |
+
"287065 2023-06-22 0.0 26.93 13.06 6.0 \n",
|
| 381 |
+
"287066 2023-06-23 1.0 23.99 15.98 6.0 \n",
|
| 382 |
+
"287067 2023-06-24 0.0 25.99 12.04 6.0 \n",
|
| 383 |
+
"287068 2023-06-25 0.0 28.99 15.02 7.0 \n",
|
| 384 |
+
"287069 2023-06-26 0.0 27.96 17.01 6.0 \n",
|
| 385 |
+
"\n",
|
| 386 |
+
" End ShiftLength weight \n",
|
| 387 |
+
"270300 10.983333 240.0 1 \n",
|
| 388 |
+
"270301 13.983333 480.0 1 \n",
|
| 389 |
+
"270302 13.983333 480.0 1 \n",
|
| 390 |
+
"270303 13.983333 480.0 1 \n",
|
| 391 |
+
"270304 13.983333 480.0 1 \n",
|
| 392 |
+
"... ... ... ... \n",
|
| 393 |
+
"287065 16.983333 660.0 1 \n",
|
| 394 |
+
"287066 16.983333 660.0 1 \n",
|
| 395 |
+
"287067 15.983333 600.0 1 \n",
|
| 396 |
+
"287068 15.983333 540.0 1 \n",
|
| 397 |
+
"287069 16.983333 660.0 1 \n",
|
| 398 |
+
"\n",
|
| 399 |
+
"[1464 rows x 22 columns]"
|
| 400 |
+
]
|
| 401 |
+
},
|
| 402 |
+
"execution_count": 14,
|
| 403 |
+
"metadata": {},
|
| 404 |
+
"output_type": "execute_result"
|
| 405 |
+
}
|
| 406 |
+
],
|
| 407 |
+
"source": [
|
| 408 |
+
"df"
|
| 409 |
+
]
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"cell_type": "code",
|
| 413 |
+
"execution_count": 17,
|
| 414 |
+
"id": "5ea34c2b-fc24-4cfa-ad46-f369bea42364",
|
| 415 |
+
"metadata": {},
|
| 416 |
+
"outputs": [
|
| 417 |
+
{
|
| 418 |
+
"data": {
|
| 419 |
+
"text/plain": [
|
| 420 |
+
"Timestamp('2023-06-26 00:00:00')"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
"execution_count": 17,
|
| 424 |
+
"metadata": {},
|
| 425 |
+
"output_type": "execute_result"
|
| 426 |
+
}
|
| 427 |
+
],
|
| 428 |
+
"source": [
|
| 429 |
+
"max(df[\"Date\"])"
|
| 430 |
+
]
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"cell_type": "code",
|
| 434 |
+
"execution_count": 20,
|
| 435 |
+
"id": "a024d9e3-e018-43fe-9bb0-20b9d9e91b53",
|
| 436 |
+
"metadata": {},
|
| 437 |
+
"outputs": [
|
| 438 |
+
{
|
| 439 |
+
"data": {
|
| 440 |
+
"text/plain": [
|
| 441 |
+
"datetime.date(2023, 5, 27)"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
"execution_count": 20,
|
| 445 |
+
"metadata": {},
|
| 446 |
+
"output_type": "execute_result"
|
| 447 |
+
}
|
| 448 |
+
],
|
| 449 |
+
"source": [
|
| 450 |
+
"datetime.date(2023, 6, 26) - datetime.timedelta(days = 30)"
|
| 451 |
+
]
|
| 452 |
+
},
|
| 453 |
+
{
|
| 454 |
+
"cell_type": "code",
|
| 455 |
+
"execution_count": 21,
|
| 456 |
+
"id": "52e0a2c8-5b53-42f4-91c9-3ca7d6a8d356",
|
| 457 |
+
"metadata": {},
|
| 458 |
+
"outputs": [
|
| 459 |
+
{
|
| 460 |
+
"data": {
|
| 461 |
+
"text/plain": [
|
| 462 |
+
"Index(['sales', 'DayInYear', 'time_idx', 'Wahl', 'Baustelle', 'MontagLangesWE',\n",
|
| 463 |
+
" 'FreitagLangesWE', 'nosale', 'holiday', 'AufSommerzeit',\n",
|
| 464 |
+
" 'AufWinterzeit', 'Group', 'Branch', 'Weekday', 'Date',\n",
|
| 465 |
+
" 'MTXWTH_Day_precip', 'MTXWTH_Temp_max', 'MTXWTH_Temp_min', 'Start',\n",
|
| 466 |
+
" 'End', 'ShiftLength', 'weight'],\n",
|
| 467 |
+
" dtype='object')"
|
| 468 |
+
]
|
| 469 |
+
},
|
| 470 |
+
"execution_count": 21,
|
| 471 |
+
"metadata": {},
|
| 472 |
+
"output_type": "execute_result"
|
| 473 |
+
}
|
| 474 |
+
],
|
| 475 |
+
"source": [
|
| 476 |
+
"df.columns"
|
| 477 |
+
]
|
| 478 |
+
},
|
| 479 |
+
{
|
| 480 |
+
"cell_type": "code",
|
| 481 |
+
"execution_count": null,
|
| 482 |
+
"id": "75415b44-41ec-4893-8452-939766ebaabc",
|
| 483 |
+
"metadata": {},
|
| 484 |
+
"outputs": [],
|
| 485 |
+
"source": []
|
| 486 |
+
}
|
| 487 |
+
],
|
| 488 |
+
"metadata": {
|
| 489 |
+
"kernelspec": {
|
| 490 |
+
"display_name": "Python 3 (ipykernel)",
|
| 491 |
+
"language": "python",
|
| 492 |
+
"name": "python3"
|
| 493 |
+
},
|
| 494 |
+
"language_info": {
|
| 495 |
+
"codemirror_mode": {
|
| 496 |
+
"name": "ipython",
|
| 497 |
+
"version": 3
|
| 498 |
+
},
|
| 499 |
+
"file_extension": ".py",
|
| 500 |
+
"mimetype": "text/x-python",
|
| 501 |
+
"name": "python",
|
| 502 |
+
"nbconvert_exporter": "python",
|
| 503 |
+
"pygments_lexer": "ipython3",
|
| 504 |
+
"version": "3.10.11"
|
| 505 |
+
}
|
| 506 |
+
},
|
| 507 |
+
"nbformat": 4,
|
| 508 |
+
"nbformat_minor": 5
|
| 509 |
+
}
|
app.py
ADDED
|
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## Imports
|
| 2 |
+
import pickle
|
| 3 |
+
import warnings
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import datetime
|
| 11 |
+
|
| 12 |
+
# import torch
|
| 13 |
+
from torch.distributions import Normal
|
| 14 |
+
from pytorch_forecasting import (
|
| 15 |
+
TimeSeriesDataSet,
|
| 16 |
+
TemporalFusionTransformer,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
## Functions
|
| 20 |
+
def raw_preds_to_df(raw,quantiles = None):
|
| 21 |
+
"""
|
| 22 |
+
raw is output of model.predict with return_index=True
|
| 23 |
+
quantiles can be provided like [0.1,0.5,0.9] to get interpretable quantiles
|
| 24 |
+
in the output, time_idx is the first prediction time index (one step after knowledge cutoff)
|
| 25 |
+
pred_idx the index of the predicted date i.e. time_idx + h - 1
|
| 26 |
+
"""
|
| 27 |
+
index = raw[2]
|
| 28 |
+
preds = raw[0].prediction
|
| 29 |
+
dec_len = preds.shape[1]
|
| 30 |
+
n_quantiles = preds.shape[-1]
|
| 31 |
+
preds_df = pd.DataFrame(index.values.repeat(dec_len * n_quantiles, axis=0),columns=index.columns)
|
| 32 |
+
preds_df = preds_df.assign(h=np.tile(np.repeat(np.arange(1,1+dec_len),n_quantiles),len(preds_df)//(dec_len*n_quantiles)))
|
| 33 |
+
preds_df = preds_df.assign(q=np.tile(np.arange(n_quantiles),len(preds_df)//n_quantiles))
|
| 34 |
+
preds_df = preds_df.assign(pred=preds.flatten().cpu().numpy())
|
| 35 |
+
if quantiles is not None:
|
| 36 |
+
preds_df['q'] = preds_df['q'].map({i:q for i,q in enumerate(quantiles)})
|
| 37 |
+
|
| 38 |
+
preds_df['pred_idx'] = preds_df['time_idx'] + preds_df['h'] - 1
|
| 39 |
+
return preds_df
|
| 40 |
+
|
| 41 |
+
def prepare_dataset(parameters, df, rain, temperature, datepicker):
|
| 42 |
+
if rain != "Default":
|
| 43 |
+
df["MTXWTH_Day_precip"] = rain_mapping[rain]
|
| 44 |
+
|
| 45 |
+
df["MTXWTH_Temp_min"] = df["MTXWTH_Temp_min"] + temperature
|
| 46 |
+
df["MTXWTH_Temp_max"] = df["MTXWTH_Temp_max"] + temperature
|
| 47 |
+
|
| 48 |
+
lowerbound = datepicker - datetime.timedelta(days = 35)
|
| 49 |
+
upperbound = datepicker + datetime.timedelta(days = 30)
|
| 50 |
+
|
| 51 |
+
df = df.loc[(df["Date"]>lowerbound) & (df["Date"]<=upperbound)]
|
| 52 |
+
|
| 53 |
+
df = TimeSeriesDataSet.from_parameters(parameters, df)
|
| 54 |
+
return df.to_dataloader(train=False, batch_size=256,num_workers = 0)
|
| 55 |
+
|
| 56 |
+
def predict(model, dataloader):
|
| 57 |
+
return model.predict(dataloader, mode="raw", return_x=True, return_index=True)
|
| 58 |
+
|
| 59 |
+
## Initiate Data
|
| 60 |
+
with open('data/parameters.pkl', 'rb') as f:
|
| 61 |
+
parameters = pickle.load(f)
|
| 62 |
+
model = TemporalFusionTransformer.load_from_checkpoint('model/tft_check.ckpt')
|
| 63 |
+
|
| 64 |
+
df = pd.read_pickle('data/test_data.pkl')
|
| 65 |
+
df = df.loc[(df["Branch"] == 15) & (df["Group"].isin(["6","7","4","1"]))]
|
| 66 |
+
|
| 67 |
+
rain_mapping = {
|
| 68 |
+
"Yes" : 1,
|
| 69 |
+
"No" : , 0
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
# Start App
|
| 73 |
+
st.title("Temporal Fusion Transformers for Interpretable Multi-horizon Time Series Forecasting")
|
| 74 |
+
|
| 75 |
+
st.markdown(body = """
|
| 76 |
+
### Abstract
|
| 77 |
+
Multi-horizon forecasting often contains a complex mix of inputs – including
|
| 78 |
+
static (i.e. time-invariant) covariates, known future inputs, and other exogenous
|
| 79 |
+
time series that are only observed in the past – without any prior information
|
| 80 |
+
on how they interact with the target. Several deep learning methods have been
|
| 81 |
+
proposed, but they are typically ‘black-box’ models which do not shed light on
|
| 82 |
+
how they use the full range of inputs present in practical scenarios. In this pa-
|
| 83 |
+
per, we introduce the Temporal Fusion Transformer (TFT) – a novel attention-
|
| 84 |
+
based architecture which combines high-performance multi-horizon forecasting
|
| 85 |
+
with interpretable insights into temporal dynamics. To learn temporal rela-
|
| 86 |
+
tionships at different scales, TFT uses recurrent layers for local processing and
|
| 87 |
+
interpretable self-attention layers for long-term dependencies. TFT utilizes spe-
|
| 88 |
+
cialized components to select relevant features and a series of gating layers to
|
| 89 |
+
suppress unnecessary components, enabling high performance in a wide range of
|
| 90 |
+
scenarios. On a variety of real-world datasets, we demonstrate significant per-
|
| 91 |
+
formance improvements over existing benchmarks, and showcase three practical
|
| 92 |
+
interpretability use cases of TFT.
|
| 93 |
+
""")
|
| 94 |
+
|
| 95 |
+
rain = st.radio("Rain Indicator", ('Default', 'Yes', 'No'))
|
| 96 |
+
|
| 97 |
+
temperature = st.slider('Change in Temperature', min_value=-10, max_value=+10, value=0, step=0.25)
|
| 98 |
+
|
| 99 |
+
datepicker = st.date_input("Start of Forecast", datetime.date(2022, 12, 24), min_value=datetime.date(2022, 6, 26) + datetime.timedelta(days = 35), max_value=datetime.date(2023, 6, 26) - datetime.timedelta(days = 30))
|
| 100 |
+
|
| 101 |
+
arr = np.random.normal(1, 1, size=100)
|
| 102 |
+
fig, ax = plt.subplots()
|
| 103 |
+
ax.hist(arr, bins=20)
|
| 104 |
+
|
| 105 |
+
st.pyplot(fig)
|
| 106 |
+
|
| 107 |
+
st.button("Forecast Sales", type="primary") #on_click=None,
|
| 108 |
+
|
| 109 |
+
# %%
|
| 110 |
+
preds = raw_preds_to_df(out, quantiles = None)
|
| 111 |
+
|
| 112 |
+
preds = preds.merge(data_selected[['time_idx','Group','Branch','sales','weight','Date','MTXWTH_Day_precip','MTXWTH_Temp_max','MTXWTH_Temp_min']],how='left',left_on=['pred_idx','Group','Branch'],right_on=['time_idx','Group','Branch'])
|
| 113 |
+
preds.rename(columns={'time_idx_x':'time_idx'},inplace=True)
|
| 114 |
+
preds.drop(columns=['time_idx_y'],inplace=True)
|
| 115 |
+
|
| 116 |
+
|
data/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
data/parameters.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06caaede2baeaa36c308e46ee74a2898141161193d0426c577e3f7029104db10
|
| 3 |
+
size 17761
|
data/test_data.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e6d1cf5ab9ad31de916030c795598d13ba388f95bbde2a3b295088666fb65ac7
|
| 3 |
+
size 31347323
|
model/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
model/tft_check.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6694f37ecd5da5795eb1b0320fa96dda374fe331b05d9d5e2d0a49001fc2f9ed
|
| 3 |
+
size 5176944
|
requirements.txt
ADDED
|
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
absl-py==1.4.0
|
| 2 |
+
aiohttp==3.8.3
|
| 3 |
+
aiosignal==1.3.1
|
| 4 |
+
alembic==1.9.2
|
| 5 |
+
asttokens==2.2.1
|
| 6 |
+
async-timeout==4.0.2
|
| 7 |
+
attrs==22.2.0
|
| 8 |
+
autopage==0.5.1
|
| 9 |
+
backcall==0.2.0
|
| 10 |
+
cachetools==5.2.1
|
| 11 |
+
certifi==2022.12.7
|
| 12 |
+
charset-normalizer==2.1.1
|
| 13 |
+
cliff==4.1.0
|
| 14 |
+
cmaes==0.9.1
|
| 15 |
+
cmd2==2.4.2
|
| 16 |
+
colorlog==6.7.0
|
| 17 |
+
comm==0.1.2
|
| 18 |
+
contourpy==1.0.7
|
| 19 |
+
cycler==0.11.0
|
| 20 |
+
debugpy==1.6.6
|
| 21 |
+
decorator==5.1.1
|
| 22 |
+
executing==1.2.0
|
| 23 |
+
fonttools==4.38.0
|
| 24 |
+
frozenlist==1.3.3
|
| 25 |
+
fsspec==2022.11.0
|
| 26 |
+
future==0.18.3
|
| 27 |
+
google-auth==2.16.0
|
| 28 |
+
google-auth-oauthlib==0.4.6
|
| 29 |
+
greenlet==2.0.1
|
| 30 |
+
#grpcio==1.51.1
|
| 31 |
+
idna==3.4
|
| 32 |
+
importlib-metadata==6.0.0
|
| 33 |
+
importlib-resources==5.10.2
|
| 34 |
+
ipykernel==6.21.2
|
| 35 |
+
ipython==8.10.0
|
| 36 |
+
jedi==0.18.2
|
| 37 |
+
joblib==1.2.0
|
| 38 |
+
jupyter_client==8.0.3
|
| 39 |
+
jupyter_core==5.2.0
|
| 40 |
+
kiwisolver==1.4.4
|
| 41 |
+
lightning-utilities==0.5.0
|
| 42 |
+
lxml==4.9.2
|
| 43 |
+
Mako==1.2.4
|
| 44 |
+
Markdown==3.4.1
|
| 45 |
+
MarkupSafe==2.1.1
|
| 46 |
+
matplotlib==3.6.3
|
| 47 |
+
matplotlib-inline==0.1.6
|
| 48 |
+
multidict==6.0.4
|
| 49 |
+
nest-asyncio==1.5.6
|
| 50 |
+
numpy==1.23.5
|
| 51 |
+
oauthlib==3.2.2
|
| 52 |
+
optuna==2.10.1
|
| 53 |
+
packaging==23.0
|
| 54 |
+
pandas==1.5.2
|
| 55 |
+
parso==0.8.3
|
| 56 |
+
patsy==0.5.3
|
| 57 |
+
pbr==5.11.1
|
| 58 |
+
pexpect==4.8.0
|
| 59 |
+
pickleshare==0.7.5
|
| 60 |
+
Pillow==9.4.0
|
| 61 |
+
platformdirs==3.0.0
|
| 62 |
+
prettytable==3.6.0
|
| 63 |
+
prompt-toolkit==3.0.37
|
| 64 |
+
protobuf==3.20.1
|
| 65 |
+
psutil==5.9.4
|
| 66 |
+
ptyprocess==0.7.0
|
| 67 |
+
pure-eval==0.2.2
|
| 68 |
+
pyasn1==0.4.8
|
| 69 |
+
pyasn1-modules==0.2.8
|
| 70 |
+
pyDeprecate==0.3.1
|
| 71 |
+
Pygments==2.14.0
|
| 72 |
+
pyparsing==3.0.9
|
| 73 |
+
pyperclip==1.8.2
|
| 74 |
+
python-dateutil==2.8.2
|
| 75 |
+
pytorch-forecasting==0.10.3
|
| 76 |
+
pytorch-lightning==1.9.0
|
| 77 |
+
pytz==2022.7.1
|
| 78 |
+
PyYAML==6.0
|
| 79 |
+
pyzmq==25.0.0
|
| 80 |
+
requests==2.28.2
|
| 81 |
+
requests-futures==1.0.0
|
| 82 |
+
requests-oauthlib==1.3.1
|
| 83 |
+
rsa==4.9
|
| 84 |
+
scikit-learn==1.1.3
|
| 85 |
+
scipy==1.10.0
|
| 86 |
+
six==1.16.0
|
| 87 |
+
SQLAlchemy==1.4.46
|
| 88 |
+
stack-data==0.6.2
|
| 89 |
+
statsmodels==0.13.5
|
| 90 |
+
stevedore==4.1.1
|
| 91 |
+
tensorboard==2.11.2
|
| 92 |
+
tensorboard-data-server==0.6.1
|
| 93 |
+
tensorboard-plugin-wit==1.8.1
|
| 94 |
+
tensorboardX==2.5.1
|
| 95 |
+
threadpoolctl==3.1.0
|
| 96 |
+
torch==1.10.2
|
| 97 |
+
torchaudio==0.10.2
|
| 98 |
+
torchmetrics==0.11.0
|
| 99 |
+
torchvision==0.11.3
|
| 100 |
+
tornado==6.2
|
| 101 |
+
tqdm==4.64.1
|
| 102 |
+
traitlets==5.9.0
|
| 103 |
+
typing_extensions==4.4.0
|
| 104 |
+
urllib3==1.26.14
|
| 105 |
+
wcwidth==0.2.6
|
| 106 |
+
Werkzeug==2.2.2
|
| 107 |
+
yahooquery==2.3.1
|
| 108 |
+
yarl==1.8.2
|
| 109 |
+
zipp==3.11.0
|