Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| class UNet(nn.Module): | |
| def __init__(self): | |
| super(UNet, self).__init__() | |
| # Encoder | |
| self.encoder = nn.Sequential( | |
| nn.Conv2d(3, 64, kernel_size=4, stride=2, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), | |
| nn.ReLU(inplace=True), | |
| ) | |
| # Decoder | |
| self.decoder = nn.Sequential( | |
| nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1), | |
| nn.ReLU(inplace=True), | |
| nn.ConvTranspose2d(64, 3, kernel_size=4, stride=2, padding=1), | |
| nn.Tanh() | |
| ) | |
| def forward(self, x): | |
| enc = self.encoder(x) | |
| dec = self.decoder(enc) | |
| return dec |