Spaces:
Runtime error
Runtime error
Update main.py
Browse files
main.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
|
| 2 |
import tempfile
|
| 3 |
import requests
|
| 4 |
from fastapi import FastAPI, HTTPException, Header, Request
|
|
@@ -14,10 +14,10 @@ from sentence_transformers import SentenceTransformer
|
|
| 14 |
import faiss
|
| 15 |
import numpy as np
|
| 16 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
|
|
|
| 17 |
|
| 18 |
import os
|
| 19 |
os.environ["HF_HOME"] = "./cache"
|
| 20 |
-
# Load environment variables
|
| 21 |
load_dotenv()
|
| 22 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
| 23 |
API_KEY = os.getenv("API_KEY")
|
|
@@ -37,7 +37,12 @@ EMBED_MODEL = SentenceTransformer("all-MiniLM-L6-v2")
|
|
| 37 |
model_name = "deepseek-ai/deepseek-llm-7b-base"
|
| 38 |
hf_token = os.getenv("HF_API_TOKEN") # Make sure your .env has HF_API_TOKEN
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
| 40 |
-
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 42 |
|
| 43 |
def query_llm(question: str, context_chunks: list):
|
|
|
|
| 1 |
+
|
| 2 |
import tempfile
|
| 3 |
import requests
|
| 4 |
from fastapi import FastAPI, HTTPException, Header, Request
|
|
|
|
| 14 |
import faiss
|
| 15 |
import numpy as np
|
| 16 |
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
| 17 |
+
# Load environment variables
|
| 18 |
|
| 19 |
import os
|
| 20 |
os.environ["HF_HOME"] = "./cache"
|
|
|
|
| 21 |
load_dotenv()
|
| 22 |
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
| 23 |
API_KEY = os.getenv("API_KEY")
|
|
|
|
| 37 |
model_name = "deepseek-ai/deepseek-llm-7b-base"
|
| 38 |
hf_token = os.getenv("HF_API_TOKEN") # Make sure your .env has HF_API_TOKEN
|
| 39 |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
|
| 40 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 41 |
+
model_name,
|
| 42 |
+
device_map="auto",
|
| 43 |
+
token=hf_token,
|
| 44 |
+
offload_folder="./cache/offload"
|
| 45 |
+
)
|
| 46 |
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
| 47 |
|
| 48 |
def query_llm(question: str, context_chunks: list):
|