from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse from transformers import AutoTokenizer, AutoProcessor, AutoModelForCausalLM import torch from PIL import Image import io app = FastAPI() model_path = "lmms-lab/LLaVA-OneVision-1.5-8B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype="auto", device_map="auto", trust_remote_code=True) processor = AutoProcessor.from_pretrained(model_path, trust_remote_code=True) def process_vision_info(messages): # Dummy implementation, replace with actual from qwen_vl_utils image_inputs = [msg['content'][0]['image'] for msg in messages] video_inputs = None return image_inputs, video_inputs @app.post("/analyze-image") async def analyze_image(file: UploadFile = File(...)): image_bytes = await file.read() image = Image.open(io.BytesIO(image_bytes)) messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": "Describe this image."}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return JSONResponse(content={"result": output_text})