from fastapi import FastAPI, File, UploadFile from fastapi.responses import JSONResponse from transformers import AutoProcessor, AutoModelForCausalLM import torch from PIL import Image import io import os os.environ["HF_HOME"] = "/app/.cache" os.environ["HF_DATASETS_CACHE"] = "/app/.cache" os.environ["TRANSFORMERS_CACHE"] = "/app/.cache" app = FastAPI() MODEL_NAME = os.getenv("MODEL_NAME", "lmms-lab/LLaVA-OneVision-1.5-8B-Instruct") model = AutoModelForCausalLM.from_pretrained( MODEL_NAME, torch_dtype="auto", device_map="auto", trust_remote_code=True ) processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True) @app.post("/analyze-image") async def analyze_image(file: UploadFile = File(...), prompt: str = "Describe this image."): image_bytes = await file.read() image = Image.open(io.BytesIO(image_bytes)) messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": prompt}, ], } ] text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) inputs = processor( text=[text], images=[image], padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return JSONResponse(content={"result": output_text[0]})