Karim-Gamal commited on
Commit
6f0c225
·
1 Parent(s): f0dcd05

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +16 -26
app.py CHANGED
@@ -1,42 +1,32 @@
1
  # import the main classes
2
- import gradio as gr
3
- import torch
4
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
5
 
6
 
7
- # Load the model.
8
- tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
9
- model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
10
-
11
  # input examples list
12
  ex_list = [["Women are not as capable as men in leadership roles."],["Women are capable as men in leadership roles."]]
13
 
14
- # generate_text method
15
- def generate_text(prompt):
16
- input_ids = tokenizer.encode(prompt, return_tensors="pt")
17
- output = model.generate(
18
- input_ids,
19
- max_length=512,
20
- temperature=0.7,
21
- do_sample=True,
22
- top_p=0.9,
23
- top_k=0,
24
- num_return_sequences=1,
25
- )
26
- return tokenizer.decode(output[0], skip_special_tokens=True)
27
 
28
  def classify_gender_equality(input_sentence):
29
  # Here goes your code to classify gender equality from input_sentence
30
  # Return the result as a string
31
 
32
-
33
  # sub_text = 'Gender equality is important for the progress of society.'
34
  sub_text = input_sentence
35
- prompt = f"Please classify the this sentence {sub_text} as promoting or not promoting gender equality:"
36
- generated_text = generate_text(prompt)
37
- # print("This sentence is",generated_text)
38
-
39
- return "This sentence is " + generated_text + " for gender equality"
 
 
40
 
41
 
42
 
 
1
  # import the main classes
2
+ import requests
 
 
3
 
4
 
 
 
 
 
5
  # input examples list
6
  ex_list = [["Women are not as capable as men in leadership roles."],["Women are capable as men in leadership roles."]]
7
 
8
+
9
+ API_URL_Switch = "https://api-inference.huggingface.co/models/google/flan-t5-base"
10
+ headers_Switch = {"Authorization": "Bearer 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"}
11
+
12
+
13
+ def query_Switch(payload):
14
+ response = requests.post(API_URL_Switch, headers=headers_Switch, json=payload)
15
+ return response.json()
 
 
 
 
 
16
 
17
  def classify_gender_equality(input_sentence):
18
  # Here goes your code to classify gender equality from input_sentence
19
  # Return the result as a string
20
 
 
21
  # sub_text = 'Gender equality is important for the progress of society.'
22
  sub_text = input_sentence
23
+ prompt = f"Please classify the this sentence ( {sub_text} ) as promoting or not promoting gender equality"
24
+
25
+ output_temp = query_Switch({
26
+ "inputs": prompt,
27
+ })
28
+
29
+ return "This sentence is " + output_temp[0]['generated_text'] + " for gender equality"
30
 
31
 
32