Spaces:
Sleeping
Sleeping
ordering url links by date
Browse files
app.py
CHANGED
|
@@ -19,9 +19,7 @@ st.image('el_pic.png')
|
|
| 19 |
|
| 20 |
#@st.cache_resource
|
| 21 |
if "messages" not in st.session_state:
|
| 22 |
-
st.session_state["messages"] = [{"role":"system", "content":"""
|
| 23 |
-
How can I help you?
|
| 24 |
-
"""}]
|
| 25 |
|
| 26 |
# Display all previous messages
|
| 27 |
for msg in st.session_state.messages:
|
|
@@ -30,7 +28,6 @@ for msg in st.session_state.messages:
|
|
| 30 |
#initialize_session_state()
|
| 31 |
|
| 32 |
|
| 33 |
-
|
| 34 |
sideb=st.sidebar
|
| 35 |
with st.sidebar:
|
| 36 |
prompt=st.text_input("Enter topic for sentiment analysis: ")
|
|
@@ -89,7 +86,13 @@ if check1:
|
|
| 89 |
'Index':np.round(sentiment_analysis_result_reddit["Sentiment"][0]['score'],2)
|
| 90 |
}
|
| 91 |
analysis_results.append(np.append(result,np.append(article.split('URL:')[-1:], ((article.split('Date: ')[-1:])[0][0:10]))))
|
| 92 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
#Generate summarized message rationalize dominant sentiment
|
| 95 |
summary = sentiment_analysis_util.generate_summary_of_sentiment(analysis_results) #, dominant_sentiment)
|
|
|
|
| 19 |
|
| 20 |
#@st.cache_resource
|
| 21 |
if "messages" not in st.session_state:
|
| 22 |
+
st.session_state["messages"] = [{"role":"system", "content":"""💬 How can I help you?"""}]
|
|
|
|
|
|
|
| 23 |
|
| 24 |
# Display all previous messages
|
| 25 |
for msg in st.session_state.messages:
|
|
|
|
| 28 |
#initialize_session_state()
|
| 29 |
|
| 30 |
|
|
|
|
| 31 |
sideb=st.sidebar
|
| 32 |
with st.sidebar:
|
| 33 |
prompt=st.text_input("Enter topic for sentiment analysis: ")
|
|
|
|
| 86 |
'Index':np.round(sentiment_analysis_result_reddit["Sentiment"][0]['score'],2)
|
| 87 |
}
|
| 88 |
analysis_results.append(np.append(result,np.append(article.split('URL:')[-1:], ((article.split('Date: ')[-1:])[0][0:10]))))
|
| 89 |
+
# print(analysis_results)
|
| 90 |
+
# import pandas as pd
|
| 91 |
+
# print('STOP')
|
| 92 |
+
# df_analysis_results=pd.DataFrame(analysis_results['News_Article'])
|
| 93 |
+
# print(df_analysis_results)
|
| 94 |
+
# df_analysis_results.sort_values(by='Date')
|
| 95 |
+
# df_analysis_results.to_csv('analysis_results.csv')
|
| 96 |
|
| 97 |
#Generate summarized message rationalize dominant sentiment
|
| 98 |
summary = sentiment_analysis_util.generate_summary_of_sentiment(analysis_results) #, dominant_sentiment)
|