Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Import necessary libraries
|
2 |
+
import torch
|
3 |
+
import numpy as np
|
4 |
+
import transformers
|
5 |
+
import scipy.io.wavfile as wavfile
|
6 |
+
import openai
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
9 |
+
from gtts import gTTS
|
10 |
+
import os
|
11 |
+
import gradio as gr
|
12 |
+
import librosa
|
13 |
+
|
14 |
+
# Set your OpenAI API key (consider using environment variables for security)
|
15 |
+
openai.api_key = "your_api_key_here" # Replace with your actual API key
|
16 |
+
|
17 |
+
class MoodEnhancerModel:
|
18 |
+
def __init__(self):
|
19 |
+
print("Initializing Mood Enhancer Model...")
|
20 |
+
# Initialize Whisper for speech recognition
|
21 |
+
print("Loading Whisper model...")
|
22 |
+
self.whisper_processor = WhisperProcessor.from_pretrained("openai/whisper-base")
|
23 |
+
self.whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
|
24 |
+
|
25 |
+
# Initialize BERT for sentiment analysis/mood detection
|
26 |
+
print("Loading BERT model...")
|
27 |
+
self.sentiment_analyzer = pipeline(
|
28 |
+
"sentiment-analysis",
|
29 |
+
model="nlptown/bert-base-multilingual-uncased-sentiment"
|
30 |
+
)
|
31 |
+
|
32 |
+
print("All models loaded successfully!")
|
33 |
+
|
34 |
+
def transcribe_audio(self, audio_file):
|
35 |
+
"""Transcribe audio using Whisper"""
|
36 |
+
print("Transcribing audio...")
|
37 |
+
# Process through Whisper API for better results
|
38 |
+
try:
|
39 |
+
with open(audio_file, "rb") as f:
|
40 |
+
audio_data = f.read()
|
41 |
+
|
42 |
+
transcript = openai.Audio.transcribe("whisper-1", audio_data)
|
43 |
+
transcribed_text = transcript["text"]
|
44 |
+
except Exception as e:
|
45 |
+
print(f"OpenAI API error: {e}")
|
46 |
+
# Fallback to local Whisper model
|
47 |
+
|
48 |
+
# Load and preprocess the audio
|
49 |
+
audio_array, sampling_rate = librosa.load(audio_file, sr=16000)
|
50 |
+
input_features = self.whisper_processor(
|
51 |
+
audio_array, sampling_rate=16000, return_tensors="pt"
|
52 |
+
).input_features
|
53 |
+
|
54 |
+
# Generate token ids
|
55 |
+
predicted_ids = self.whisper_model.generate(input_features)
|
56 |
+
|
57 |
+
# Decode token ids to text
|
58 |
+
transcribed_text = self.whisper_processor.batch_decode(
|
59 |
+
predicted_ids, skip_special_tokens=True
|
60 |
+
)[0]
|
61 |
+
|
62 |
+
print(f"Transcribed text: {transcribed_text}")
|
63 |
+
return transcribed_text
|
64 |
+
|
65 |
+
def analyze_mood(self, text):
|
66 |
+
"""Analyze mood using BERT"""
|
67 |
+
print("Analyzing mood...")
|
68 |
+
results = self.sentiment_analyzer(text)
|
69 |
+
|
70 |
+
# Convert 1-5 star rating to mood scale
|
71 |
+
sentiment_score = int(results[0]['label'].split()[0])
|
72 |
+
|
73 |
+
moods = {
|
74 |
+
1: "very negative",
|
75 |
+
2: "negative",
|
76 |
+
3: "neutral",
|
77 |
+
4: "positive",
|
78 |
+
5: "very positive"
|
79 |
+
}
|
80 |
+
|
81 |
+
detected_mood = moods[sentiment_score]
|
82 |
+
print(f"Detected mood: {detected_mood}")
|
83 |
+
return detected_mood, sentiment_score
|
84 |
+
|
85 |
+
def generate_response(self, text, mood, mood_score):
|
86 |
+
"""Generate mood enhancing response using OpenAI"""
|
87 |
+
print("Generating mood enhancing response...")
|
88 |
+
|
89 |
+
# Customize the prompt based on detected mood
|
90 |
+
if mood_score <= 2:
|
91 |
+
prompt = f"""
|
92 |
+
The user seems to be feeling {mood}. Their message was: "{text}"
|
93 |
+
Generate an empathetic and uplifting response that acknowledges their feelings
|
94 |
+
but helps shift their perspective to something more positive. Keep the response
|
95 |
+
conversational, warm and under 3 sentences.
|
96 |
+
"""
|
97 |
+
elif mood_score == 3:
|
98 |
+
prompt = f"""
|
99 |
+
The user seems to be feeling {mood}. Their message was: "{text}"
|
100 |
+
Generate a cheerful response that builds on any positive aspects of their message
|
101 |
+
and adds some encouraging thoughts. Keep the response conversational,
|
102 |
+
warm and under 3 sentences.
|
103 |
+
"""
|
104 |
+
else:
|
105 |
+
prompt = f"""
|
106 |
+
The user seems to be feeling {mood}. Their message was: "{text}"
|
107 |
+
Generate a response that celebrates their positive state and offers a way to
|
108 |
+
maintain or enhance this good feeling. Keep the response conversational,
|
109 |
+
warm and under 3 sentences.
|
110 |
+
"""
|
111 |
+
|
112 |
+
try:
|
113 |
+
# Updated for OpenAI's current API format
|
114 |
+
response = openai.ChatCompletion.create(
|
115 |
+
model="gpt-3.5-turbo",
|
116 |
+
messages=[
|
117 |
+
{"role": "system", "content": "You are an empathetic AI assistant designed to enhance the user's mood."},
|
118 |
+
{"role": "user", "content": prompt}
|
119 |
+
],
|
120 |
+
max_tokens=150,
|
121 |
+
temperature=0.7
|
122 |
+
)
|
123 |
+
|
124 |
+
enhanced_response = response['choices'][0]['message']['content'].strip()
|
125 |
+
print(f"Generated response: {enhanced_response}")
|
126 |
+
return enhanced_response
|
127 |
+
|
128 |
+
except Exception as e:
|
129 |
+
print(f"Error with OpenAI API: {e}")
|
130 |
+
# Fallback responses if API fails
|
131 |
+
if mood_score <= 2:
|
132 |
+
return "I notice you might be feeling down. Remember that challenging moments are temporary, and small positive steps can help shift your perspective."
|
133 |
+
elif mood_score == 3:
|
134 |
+
return "I sense a neutral mood. What's one small thing that brought you joy today? Focusing on positive moments, even tiny ones, can boost your overall wellbeing."
|
135 |
+
else:
|
136 |
+
return "It sounds like you're in a good mood! That's wonderful to hear. Savoring these positive feelings can help them last longer."
|
137 |
+
|
138 |
+
def text_to_speech(self, text):
|
139 |
+
"""Convert text to speech"""
|
140 |
+
print("Converting to speech...")
|
141 |
+
tts = gTTS(text=text, lang='en', slow=False)
|
142 |
+
output_path = "response.mp3"
|
143 |
+
tts.save(output_path)
|
144 |
+
return output_path
|
145 |
+
|
146 |
+
def process_text_input(self, text_input):
|
147 |
+
"""Process text input and return results"""
|
148 |
+
mood, mood_score = self.analyze_mood(text_input)
|
149 |
+
response = self.generate_response(text_input, mood, mood_score)
|
150 |
+
audio_file = self.text_to_speech(response)
|
151 |
+
|
152 |
+
return text_input, mood, mood_score, response, audio_file
|
153 |
+
|
154 |
+
def process_audio_input(self, audio_file):
|
155 |
+
"""Process audio input and return results"""
|
156 |
+
text = self.transcribe_audio(audio_file)
|
157 |
+
mood, mood_score = self.analyze_mood(text)
|
158 |
+
response = self.generate_response(text, mood, mood_score)
|
159 |
+
audio_response = self.text_to_speech(response)
|
160 |
+
|
161 |
+
return text, mood, mood_score, response, audio_response
|
162 |
+
|
163 |
+
# Initialize the model
|
164 |
+
model = MoodEnhancerModel()
|
165 |
+
|
166 |
+
# Create a Gradio interface for text input
|
167 |
+
def text_interface(text):
|
168 |
+
input_text, mood, mood_score, response, audio_file = model.process_text_input(text)
|
169 |
+
return mood, f"Mood score: {mood_score}/5", response, audio_file
|
170 |
+
|
171 |
+
# Create a Gradio interface for audio input
|
172 |
+
def audio_interface(audio):
|
173 |
+
input_text, mood, mood_score, response, audio_file = model.process_audio_input(audio)
|
174 |
+
return input_text, mood, f"Mood score: {mood_score}/5", response, audio_file
|
175 |
+
|
176 |
+
# Create Gradio tabs for different input types
|
177 |
+
with gr.Blocks(title="Mood Enhancer") as demo:
|
178 |
+
gr.Markdown("# Mood Enhancer")
|
179 |
+
gr.Markdown("Upload an audio file or enter text to analyze your mood and receive an uplifting response.")
|
180 |
+
|
181 |
+
with gr.Tabs():
|
182 |
+
with gr.TabItem("Text Input"):
|
183 |
+
with gr.Row():
|
184 |
+
text_input = gr.Textbox(label="Enter your text", placeholder="How are you feeling today?", lines=3)
|
185 |
+
|
186 |
+
text_button = gr.Button("Analyze Mood")
|
187 |
+
|
188 |
+
with gr.Row():
|
189 |
+
text_mood = gr.Textbox(label="Detected Mood")
|
190 |
+
text_score = gr.Textbox(label="Mood Score")
|
191 |
+
|
192 |
+
text_response = gr.Textbox(label="Response", lines=3)
|
193 |
+
text_audio = gr.Audio(label="Audio Response")
|
194 |
+
|
195 |
+
text_button.click(
|
196 |
+
fn=text_interface,
|
197 |
+
inputs=text_input,
|
198 |
+
outputs=[text_mood, text_score, text_response, text_audio]
|
199 |
+
)
|
200 |
+
|
201 |
+
with gr.TabItem("Audio Input"):
|
202 |
+
audio_input = gr.Audio(label="Upload or Record Audio", type="filepath")
|
203 |
+
audio_button = gr.Button("Analyze Audio")
|
204 |
+
|
205 |
+
with gr.Row():
|
206 |
+
transcribed_text = gr.Textbox(label="Transcribed Text")
|
207 |
+
|
208 |
+
with gr.Row():
|
209 |
+
audio_mood = gr.Textbox(label="Detected Mood")
|
210 |
+
audio_score = gr.Textbox(label="Mood Score")
|
211 |
+
|
212 |
+
audio_response = gr.Textbox(label="Response", lines=3)
|
213 |
+
response_audio = gr.Audio(label="Audio Response")
|
214 |
+
|
215 |
+
audio_button.click(
|
216 |
+
fn=audio_interface,
|
217 |
+
inputs=audio_input,
|
218 |
+
outputs=[transcribed_text, audio_mood, audio_score, audio_response, response_audio]
|
219 |
+
)
|
220 |
+
|
221 |
+
# Launch the Gradio interface
|
222 |
+
demo.launch(share=True)
|