Spaces:
Runtime error
Runtime error
kazeemkz
commited on
Commit
·
8506669
1
Parent(s):
46ec729
initial commit
Browse files- 09_preptrained_effnetb2_20_percent (2).pth +3 -0
- app.py +62 -0
- examples/pizza.jpg +0 -0
- examples/pizza_1.jpg +0 -0
- examples/steak.jpg +0 -0
- model.py +28 -0
- requirements.txt +3 -0
09_preptrained_effnetb2_20_percent (2).pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e8e5bbde000377e5b344db2fb6a136c33820becbda8796ab59a7afd3796bb63
|
3 |
+
size 31288122
|
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
|
5 |
+
#from demos.foodvision_mini.model import create_effnetb2_model
|
6 |
+
from model import create_effnetb2_model
|
7 |
+
from timeit import default_timer as timer
|
8 |
+
from typing import Tuple, Dict
|
9 |
+
|
10 |
+
#setup classnames
|
11 |
+
|
12 |
+
class_names = ['pizza', 'steak', 'sushi']
|
13 |
+
|
14 |
+
# model and trandorms preparations
|
15 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3)
|
16 |
+
|
17 |
+
#load save weights
|
18 |
+
|
19 |
+
effnetb2.load_state_dict(
|
20 |
+
torch.load(f = "09_preptrained_effnetb2_20_percent (2).pth",
|
21 |
+
map_location = torch.device('cpu'))
|
22 |
+
|
23 |
+
)
|
24 |
+
|
25 |
+
# make predictions
|
26 |
+
|
27 |
+
def predict(img) -> Tuple[Dict,float] :
|
28 |
+
start_time = timer()
|
29 |
+
# this returns the prediction, and then, time
|
30 |
+
#start a timers
|
31 |
+
# transform the input image for use with effnetb2
|
32 |
+
#put model into eval mode
|
33 |
+
# create a prediction label and prediction probability dictionary
|
34 |
+
img = effnetb2_transforms(img).unsqueeze(0)
|
35 |
+
effnetb2.eval()
|
36 |
+
|
37 |
+
with torch.inference_mode():
|
38 |
+
pred_probs = torch.softmax(effnetb2(img), dim = 1)
|
39 |
+
|
40 |
+
pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))}
|
41 |
+
|
42 |
+
end_time = timer()
|
43 |
+
pred_time = round(end_time - start_time, 4)
|
44 |
+
|
45 |
+
return pred_labels_and_probs, pred_time
|
46 |
+
|
47 |
+
import os
|
48 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
49 |
+
|
50 |
+
title = "FoodVision Mini"
|
51 |
+
Description = "An EfficientNetB2 feature computer vision model to classify images as pizza, steak or sushi"
|
52 |
+
article = "Cretated at......"
|
53 |
+
|
54 |
+
demo = gr.Interface(fn=predict,inputs=gr.Image(type='pil'),
|
55 |
+
outputs =[gr.Label(num_top_classes=3, label = "Predictions"),
|
56 |
+
gr.Number(label="Prediction time (s)")],
|
57 |
+
examples= example_list,
|
58 |
+
title = title,
|
59 |
+
description=Description,
|
60 |
+
article=article)
|
61 |
+
|
62 |
+
demo.launch(debug=False,share = True) # print errors locally, generate a publically shareable URL
|
examples/pizza.jpg
ADDED
examples/pizza_1.jpg
ADDED
examples/steak.jpg
ADDED
model.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
import torchvision
|
4 |
+
from torch import nn
|
5 |
+
|
6 |
+
def create_effnetb2_model(num_classes:int=3, seed:int=42):
|
7 |
+
|
8 |
+
weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
9 |
+
|
10 |
+
transforms = weights.transforms()
|
11 |
+
|
12 |
+
#setup pretrained model instance
|
13 |
+
|
14 |
+
model = torchvision.models.efficientnet_b2(weights=weights)
|
15 |
+
|
16 |
+
# free base layer in the model
|
17 |
+
|
18 |
+
for param in model.parameters():
|
19 |
+
param.requires_grad = False
|
20 |
+
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
model.classifier = nn.Sequential(
|
23 |
+
nn.Dropout(p = 0.3, inplace= True),
|
24 |
+
nn.Linear(in_features = 1408,out_features =num_classes, bias = True)
|
25 |
+
|
26 |
+
)
|
27 |
+
|
28 |
+
return model, transforms
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch ==2.2.0
|
2 |
+
torchvision ==0.17.0
|
3 |
+
gradio==4.26.0
|