import gradio as gr import os import torch #from demos.foodvision_mini.model import create_effnetb2_model from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict #setup classnames class_names = ['pizza', 'steak', 'sushi'] # model and trandorms preparations effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3) #load save weights effnetb2.load_state_dict( torch.load(f = "09_preptrained_effnetb2_20_percent (2).pth", map_location = torch.device('cpu')) ) # make predictions def predict(img) -> Tuple[Dict,float] : start_time = timer() # this returns the prediction, and then, time #start a timers # transform the input image for use with effnetb2 #put model into eval mode # create a prediction label and prediction probability dictionary img = effnetb2_transforms(img).unsqueeze(0) effnetb2.eval() with torch.inference_mode(): pred_probs = torch.softmax(effnetb2(img), dim = 1) pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))} end_time = timer() pred_time = round(end_time - start_time, 4) return pred_labels_and_probs, pred_time import os example_list = [["examples/" + example] for example in os.listdir("examples")] title = "FoodVision Mini" Description = "An EfficientNetB2 feature computer vision model to classify images as pizza, steak or sushi" article = "Cretated at......" demo = gr.Interface(fn=predict,inputs=gr.Image(type='pil'), outputs =[gr.Label(num_top_classes=3, label = "Predictions"), gr.Number(label="Prediction time (s)")], examples= example_list, title = title, description=Description, article=article) demo.launch(debug=False,share = True) # print errors locally, generate a publically shareable URL