main.py uploaded
Browse files
main.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, HTTPException, Query
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import joblib
|
| 4 |
+
|
| 5 |
+
app = FastAPI()
|
| 6 |
+
|
| 7 |
+
# Load the sepsis prediction model
|
| 8 |
+
model = joblib.load('XGB.joblib')
|
| 9 |
+
|
| 10 |
+
@app.get("/")
|
| 11 |
+
async def read_root():
|
| 12 |
+
return {"message": "Sepsis Prediction API using FastAPI"}
|
| 13 |
+
|
| 14 |
+
def classify(prediction):
|
| 15 |
+
if prediction == 0:
|
| 16 |
+
return "Patient does not have sepsis"
|
| 17 |
+
else:
|
| 18 |
+
return "Patient has sepsis"
|
| 19 |
+
|
| 20 |
+
@app.get("/predict/")
|
| 21 |
+
async def predict_sepsis(
|
| 22 |
+
prg: float = Query(..., description="Plasma glucose"),
|
| 23 |
+
pl: float = Query(..., description="Blood Work Result-1 (mu U/ml)"),
|
| 24 |
+
pr: float = Query(..., description="Blood Pressure (mm Hg)"),
|
| 25 |
+
sk: float = Query(..., description="Blood Work Result-2 (mm)"),
|
| 26 |
+
ts: float = Query(..., description="Blood Work Result-3 (mu U/ml)"),
|
| 27 |
+
m11: float = Query(..., description="Body mass index (weight in kg/(height in m)^2"),
|
| 28 |
+
bd2: float = Query(..., description="Blood Work Result-4 (mu U/ml)"),
|
| 29 |
+
age: int = Query(..., description="Patient's age (years)")
|
| 30 |
+
):
|
| 31 |
+
input_data = [prg, pl, pr, sk, ts, m11, bd2, age]
|
| 32 |
+
|
| 33 |
+
input_df = pd.DataFrame([input_data], columns=[
|
| 34 |
+
"Plasma glucose", "Blood Work Result-1", "Blood Pressure",
|
| 35 |
+
"Blood Work Result-2", "Blood Work Result-3",
|
| 36 |
+
"Body mass index", "Blood Work Result-4", "Age"
|
| 37 |
+
])
|
| 38 |
+
|
| 39 |
+
pred = model.predict(input_df)
|
| 40 |
+
output = classify(pred[0])
|
| 41 |
+
|
| 42 |
+
response = {
|
| 43 |
+
"prediction": output
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
return response
|
| 47 |
+
|
| 48 |
+
# Run the app using Uvicorn
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
import uvicorn
|
| 51 |
+
uvicorn.run(app, host="127.0.0.1", port=7860)
|