Spaces:
Runtime error
Runtime error
import sys | |
import os | |
sys.path.append('./') | |
os.system("pip install gradio accelerate==0.25.0 torchmetrics==1.2.1 tqdm==4.66.1 fastapi==0.111.0 transformers==4.36.2 diffusers==0.25 einops==0.7.0 bitsandbytes scipy==1.11.1 opencv-python gradio==4.24.0 fvcore cloudpickle omegaconf pycocotools basicsr av onnxruntime==1.16.2 peft==0.11.1 huggingface_hub==0.24.7 --no-deps") | |
import spaces | |
from fastapi import FastAPI | |
app = FastAPI() | |
from PIL import Image | |
import gradio as gr | |
from src.tryon_pipeline import StableDiffusionXLInpaintPipeline as TryonPipeline | |
from src.unet_hacked_garmnet import UNet2DConditionModel as UNet2DConditionModel_ref | |
from src.unet_hacked_tryon import UNet2DConditionModel | |
from transformers import ( | |
CLIPImageProcessor, | |
CLIPVisionModelWithProjection, | |
CLIPTextModel, | |
CLIPTextModelWithProjection, | |
) | |
from diffusers import DDPMScheduler,AutoencoderKL | |
from typing import List | |
import torch | |
import os | |
from transformers import AutoTokenizer | |
import numpy as np | |
from torchvision import transforms | |
device = 'cuda:0' if torch.cuda.is_available() else 'cpu' | |
def pil_to_binary_mask(pil_image, threshold=0): | |
np_image = np.array(pil_image) | |
grayscale_image = Image.fromarray(np_image).convert("L") | |
binary_mask = np.array(grayscale_image) > threshold | |
mask = np.zeros(binary_mask.shape, dtype=np.uint8) | |
for i in range(binary_mask.shape[0]): | |
for j in range(binary_mask.shape[1]): | |
if binary_mask[i,j] == True : | |
mask[i,j] = 1 | |
mask = (mask*255).astype(np.uint8) | |
output_mask = Image.fromarray(mask) | |
return output_mask | |
base_path = 'Keshabwi66/SmartLugaModel' | |
unet = UNet2DConditionModel.from_pretrained( | |
base_path, | |
subfolder="unet", | |
torch_dtype=torch.float16, | |
) | |
unet.requires_grad_(False) | |
tokenizer_one = AutoTokenizer.from_pretrained( | |
base_path, | |
subfolder="tokenizer", | |
revision=None, | |
use_fast=False, | |
) | |
tokenizer_two = AutoTokenizer.from_pretrained( | |
base_path, | |
subfolder="tokenizer_2", | |
revision=None, | |
use_fast=False, | |
) | |
noise_scheduler = DDPMScheduler.from_pretrained(base_path, subfolder="scheduler") | |
text_encoder_one = CLIPTextModel.from_pretrained( | |
base_path, | |
subfolder="text_encoder", | |
torch_dtype=torch.float16, | |
) | |
text_encoder_two = CLIPTextModelWithProjection.from_pretrained( | |
base_path, | |
subfolder="text_encoder_2", | |
torch_dtype=torch.float16, | |
) | |
image_encoder = CLIPVisionModelWithProjection.from_pretrained( | |
base_path, | |
subfolder="image_encoder", | |
torch_dtype=torch.float16, | |
) | |
vae = AutoencoderKL.from_pretrained(base_path, | |
subfolder="vae", | |
torch_dtype=torch.float16, | |
) | |
# "stabilityai/stable-diffusion-xl-base-1.0", | |
UNet_Encoder = UNet2DConditionModel_ref.from_pretrained( | |
base_path, | |
subfolder="unet_encoder", | |
torch_dtype=torch.float16, | |
) | |
UNet_Encoder.requires_grad_(False) | |
image_encoder.requires_grad_(False) | |
vae.requires_grad_(False) | |
unet.requires_grad_(False) | |
text_encoder_one.requires_grad_(False) | |
text_encoder_two.requires_grad_(False) | |
tensor_transfrom = transforms.Compose( | |
[ | |
transforms.ToTensor(), | |
transforms.Normalize([0.5], [0.5]), | |
] | |
) | |
pipe = TryonPipeline.from_pretrained( | |
base_path, | |
unet=unet, | |
vae=vae, | |
feature_extractor= CLIPImageProcessor(), | |
text_encoder = text_encoder_one, | |
text_encoder_2 = text_encoder_two, | |
tokenizer = tokenizer_one, | |
tokenizer_2 = tokenizer_two, | |
scheduler = noise_scheduler, | |
image_encoder=image_encoder, | |
torch_dtype=torch.float16, | |
) | |
pipe.unet_encoder = UNet_Encoder | |
def start_tryon(person_img, mask_img, cloth_img, garment_des, denoise_steps=10, seed=42): | |
# Assuming device is set up (e.g., "cuda" or "cpu") | |
pipe.to(device) | |
pipe.unet_encoder.to(device) | |
# Resize and prepare images | |
garm_img = cloth_img.convert("RGB").resize((768, 1024)) | |
human_img = person_img.convert("RGB").resize((768, 1024)) | |
mask = pil_to_binary_mask(mask_img.convert("RGB").resize((768, 1024))) | |
pose_img=Image.open("00006_00.jpg") | |
# Prepare pose image (already uploaded) | |
pose_img = pose_img.resize((768, 1024)) | |
# Embedding generation for prompts | |
with torch.no_grad(): | |
with torch.cuda.amp.autocast(): | |
# Generate text embeddings for garment description | |
prompt = f"model is wearing {garment_des}" | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
with torch.inference_mode(): | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
)= pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=True, | |
negative_prompt=negative_prompt, | |
) | |
prompt = "a photo of " + garment_des | |
negative_prompt = "monochrome, lowres, bad anatomy, worst quality, low quality" | |
if not isinstance(prompt, List): | |
prompt = [prompt] * 1 | |
if not isinstance(negative_prompt, List): | |
negative_prompt = [negative_prompt] * 1 | |
with torch.inference_mode(): | |
( | |
prompt_embeds_cloth, | |
_, | |
_, | |
_, | |
)= pipe.encode_prompt( | |
prompt, | |
num_images_per_prompt=1, | |
do_classifier_free_guidance=False, | |
negative_prompt=negative_prompt, | |
) | |
# Convert images to tensors for processing | |
pose_img_tensor = tensor_transfrom(pose_img).unsqueeze(0).to(device, torch.float16) | |
garm_tensor = tensor_transfrom(garm_img).unsqueeze(0).to(device, torch.float16) | |
# Prepare the generator with optional seed | |
generator = torch.Generator(device).manual_seed(seed) if seed is not None else None | |
# Generate the virtual try-on output image | |
images = pipe( | |
prompt_embeds=prompt_embeds.to(device, torch.float16), | |
negative_prompt_embeds=negative_prompt_embeds.to(device, torch.float16), | |
pooled_prompt_embeds=pooled_prompt_embeds.to(device, torch.float16), | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds.to(device, torch.float16), | |
num_inference_steps=denoise_steps, | |
generator=generator, | |
strength=1.0, | |
pose_img=pose_img_tensor.to(device, torch.float16), | |
text_embeds_cloth=prompt_embeds_cloth.to(device, torch.float16), | |
cloth=garm_tensor.to(device, torch.float16), | |
mask_image=mask, | |
image=human_img, | |
height=1024, | |
width=768, | |
ip_adapter_image=garm_img.resize((768, 1024)), | |
guidance_scale=2.0, | |
)[0] | |
return images[0] | |
# Gradio interface for the virtual try-on model | |
image_blocks = gr.Blocks().queue() | |
with image_blocks as demo: | |
gr.Markdown("## SmartLuga") | |
with gr.Row(): | |
with gr.Column(): | |
person_img = gr.Image(label='Person Image', sources='upload', type="pil") | |
mask_img = gr.Image(label='Mask Image', sources='upload', type="pil") | |
with gr.Column(): | |
cloth_img = gr.Image(label='Garment Image', sources='upload', type="pil") | |
garment_des = gr.Textbox(placeholder="Description of garment ex) Short Sleeve Round Neck T-shirts", label="Garment Description") | |
with gr.Column(): | |
image_out = gr.Image(label="Output Image", elem_id="output-img", show_share_button=False) | |
try_button = gr.Button(value="Try-on") | |
try_button.click(fn=start_tryon, inputs=[person_img, mask_img, cloth_img, garment_des], outputs=[image_out], api_name='tryon') | |
image_blocks.launch() |