Spaces:
Running
on
Zero
Running
on
Zero
Update custom_pipeline.py
Browse files- custom_pipeline.py +4 -21
custom_pipeline.py
CHANGED
@@ -42,7 +42,7 @@ def prepare_timesteps(
|
|
42 |
return timesteps, num_inference_steps
|
43 |
|
44 |
# FLUX pipeline function
|
45 |
-
class
|
46 |
"""
|
47 |
Extends the FluxPipeline to yield intermediate images during the denoising process
|
48 |
with progressively increasing resolution for faster generation.
|
@@ -56,7 +56,6 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
56 |
width: Optional[int] = None,
|
57 |
num_inference_steps: int = 4,
|
58 |
timesteps: List[int] = None,
|
59 |
-
guidance_scale: float = 3.5,
|
60 |
num_images_per_prompt: Optional[int] = 1,
|
61 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
62 |
latents: Optional[torch.FloatTensor] = None,
|
@@ -64,8 +63,7 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
64 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
65 |
output_type: Optional[str] = "pil",
|
66 |
return_dict: bool = True,
|
67 |
-
|
68 |
-
max_sequence_length: int = 300,
|
69 |
):
|
70 |
"""Generates images and yields intermediate results during the denoising process."""
|
71 |
height = height or self.default_sample_size * self.vae_scale_factor
|
@@ -82,16 +80,10 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
82 |
max_sequence_length=max_sequence_length,
|
83 |
)
|
84 |
|
85 |
-
self._guidance_scale = guidance_scale
|
86 |
-
self._joint_attention_kwargs = joint_attention_kwargs
|
87 |
-
self._interrupt = False
|
88 |
-
|
89 |
# 2. Define call parameters
|
90 |
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
91 |
device = self._execution_device
|
92 |
|
93 |
-
# 3. Encode prompt
|
94 |
-
lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
|
95 |
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
96 |
prompt=prompt,
|
97 |
prompt_2=prompt_2,
|
@@ -100,7 +92,6 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
100 |
device=device,
|
101 |
num_images_per_prompt=num_images_per_prompt,
|
102 |
max_sequence_length=max_sequence_length,
|
103 |
-
lora_scale=lora_scale,
|
104 |
)
|
105 |
# 4. Prepare latent variables
|
106 |
num_channels_latents = self.transformer.config.in_channels // 4
|
@@ -128,29 +119,21 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
128 |
)
|
129 |
self._num_timesteps = len(timesteps)
|
130 |
|
131 |
-
# Handle guidance
|
132 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
|
133 |
-
|
134 |
# 6. Denoising loop
|
135 |
for i, t in enumerate(timesteps):
|
136 |
-
|
137 |
-
continue
|
138 |
-
|
139 |
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
140 |
|
141 |
noise_pred = self.transformer(
|
142 |
hidden_states=latents,
|
143 |
timestep=timestep / 1000,
|
144 |
-
guidance=guidance,
|
145 |
pooled_projections=pooled_prompt_embeds,
|
146 |
encoder_hidden_states=prompt_embeds,
|
147 |
txt_ids=text_ids,
|
148 |
img_ids=latent_image_ids,
|
149 |
-
joint_attention_kwargs=self.joint_attention_kwargs,
|
150 |
return_dict=False,
|
151 |
)[0]
|
152 |
|
153 |
-
# Yield intermediate result
|
154 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
155 |
torch.cuda.empty_cache()
|
156 |
|
@@ -165,4 +148,4 @@ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
|
|
165 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
166 |
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
167 |
image = vae.decode(latents, return_dict=False)[0]
|
168 |
-
return self.image_processor.postprocess(image, output_type=output_type)[0]
|
|
|
42 |
return timesteps, num_inference_steps
|
43 |
|
44 |
# FLUX pipeline function
|
45 |
+
class HighSpeedFluxPipeline(FluxPipeline):
|
46 |
"""
|
47 |
Extends the FluxPipeline to yield intermediate images during the denoising process
|
48 |
with progressively increasing resolution for faster generation.
|
|
|
56 |
width: Optional[int] = None,
|
57 |
num_inference_steps: int = 4,
|
58 |
timesteps: List[int] = None,
|
|
|
59 |
num_images_per_prompt: Optional[int] = 1,
|
60 |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
61 |
latents: Optional[torch.FloatTensor] = None,
|
|
|
63 |
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
64 |
output_type: Optional[str] = "pil",
|
65 |
return_dict: bool = True,
|
66 |
+
max_sequence_length: int = 128,
|
|
|
67 |
):
|
68 |
"""Generates images and yields intermediate results during the denoising process."""
|
69 |
height = height or self.default_sample_size * self.vae_scale_factor
|
|
|
80 |
max_sequence_length=max_sequence_length,
|
81 |
)
|
82 |
|
|
|
|
|
|
|
|
|
83 |
# 2. Define call parameters
|
84 |
batch_size = 1 if isinstance(prompt, str) else len(prompt)
|
85 |
device = self._execution_device
|
86 |
|
|
|
|
|
87 |
prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
|
88 |
prompt=prompt,
|
89 |
prompt_2=prompt_2,
|
|
|
92 |
device=device,
|
93 |
num_images_per_prompt=num_images_per_prompt,
|
94 |
max_sequence_length=max_sequence_length,
|
|
|
95 |
)
|
96 |
# 4. Prepare latent variables
|
97 |
num_channels_latents = self.transformer.config.in_channels // 4
|
|
|
119 |
)
|
120 |
self._num_timesteps = len(timesteps)
|
121 |
|
|
|
|
|
|
|
122 |
# 6. Denoising loop
|
123 |
for i, t in enumerate(timesteps):
|
124 |
+
|
|
|
|
|
125 |
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
126 |
|
127 |
noise_pred = self.transformer(
|
128 |
hidden_states=latents,
|
129 |
timestep=timestep / 1000,
|
|
|
130 |
pooled_projections=pooled_prompt_embeds,
|
131 |
encoder_hidden_states=prompt_embeds,
|
132 |
txt_ids=text_ids,
|
133 |
img_ids=latent_image_ids,
|
|
|
134 |
return_dict=False,
|
135 |
)[0]
|
136 |
|
|
|
137 |
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
138 |
torch.cuda.empty_cache()
|
139 |
|
|
|
148 |
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
149 |
latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
|
150 |
image = vae.decode(latents, return_dict=False)[0]
|
151 |
+
return self.image_processor.postprocess(image, output_type=output_type)[0]
|