import torch import numpy as np from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler from typing import Any, Dict, List, Optional, Union from PIL import Image # Constants for shift calculation BASE_SEQ_LEN = 256 MAX_SEQ_LEN = 4096 BASE_SHIFT = 0.5 MAX_SHIFT = 1.2 # Helper functions def calculate_timestep_shift(image_seq_len: int) -> float: """Calculates the timestep shift (mu) based on the image sequence length.""" m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN) b = BASE_SHIFT - m * BASE_SEQ_LEN mu = image_seq_len * m + b return mu def prepare_timesteps( scheduler: FlowMatchEulerDiscreteScheduler, num_inference_steps: Optional[int] = None, device: Optional[Union[str, torch.device]] = None, timesteps: Optional[List[int]] = None, sigmas: Optional[List[float]] = None, mu: Optional[float] = None, ) -> (torch.Tensor, int): """Prepares the timesteps for the diffusion process.""" if timesteps is not None and sigmas is not None: raise ValueError("Only one of `timesteps` or `sigmas` can be passed.") if timesteps is not None: scheduler.set_timesteps(timesteps=timesteps, device=device) elif sigmas is not None: scheduler.set_timesteps(sigmas=sigmas, device=device) else: scheduler.set_timesteps(num_inference_steps, device=device, mu=mu) timesteps = scheduler.timesteps num_inference_steps = len(timesteps) return timesteps, num_inference_steps # FLUX pipeline function class FLUXPipelineWithIntermediateOutputs(FluxPipeline): """ Extends the FluxPipeline to yield intermediate images during the denoising process with progressively increasing resolution for faster generation. """ @torch.inference_mode() def generate_images( self, prompt: Union[str, List[str]] = None, prompt_2: Optional[Union[str, List[str]]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 4, timesteps: List[int] = None, guidance_scale: float = 3.5, num_images_per_prompt: Optional[int] = 1, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, pooled_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, joint_attention_kwargs: Optional[Dict[str, Any]] = None, max_sequence_length: int = 300, ): """Generates images and yields intermediate results during the denoising process.""" height = height or self.default_sample_size * self.vae_scale_factor width = width or self.default_sample_size * self.vae_scale_factor # 1. Check inputs self.check_inputs( prompt, prompt_2, height, width, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, max_sequence_length=max_sequence_length, ) self._guidance_scale = guidance_scale self._joint_attention_kwargs = joint_attention_kwargs self._interrupt = False # 2. Define call parameters batch_size = 1 if isinstance(prompt, str) else len(prompt) device = self._execution_device # 3. Encode prompt lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt( prompt=prompt, prompt_2=prompt_2, prompt_embeds=prompt_embeds, pooled_prompt_embeds=pooled_prompt_embeds, device=device, num_images_per_prompt=num_images_per_prompt, max_sequence_length=max_sequence_length, lora_scale=lora_scale, ) # 4. Prepare latent variables num_channels_latents = self.transformer.config.in_channels // 4 latents, latent_image_ids = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 5. Prepare timesteps sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) image_seq_len = latents.shape[1] mu = calculate_timestep_shift(image_seq_len) timesteps, num_inference_steps = prepare_timesteps( self.scheduler, num_inference_steps, device, timesteps, sigmas, mu=mu, ) self._num_timesteps = len(timesteps) # Handle guidance guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None # 6. Denoising loop for i, t in enumerate(timesteps): if self.interrupt: continue timestep = t.expand(latents.shape[0]).to(latents.dtype) noise_pred = self.transformer( hidden_states=latents, timestep=timestep / 1000, guidance=guidance, pooled_projections=pooled_prompt_embeds, encoder_hidden_states=prompt_embeds, txt_ids=text_ids, img_ids=latent_image_ids, joint_attention_kwargs=self.joint_attention_kwargs, return_dict=False, )[0] # Yield intermediate result latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] yield self._decode_latents_to_image(latents, height, width, output_type) torch.cuda.empty_cache() # Final image self.maybe_free_model_hooks() torch.cuda.empty_cache() def _decode_latents_to_image(self, latents, height, width, output_type, vae=None): """Decodes the given latents into an image.""" vae = vae or self.vae latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor image = vae.decode(latents, return_dict=False)[0] return self.image_processor.postprocess(image, output_type=output_type)[0]