Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
demo = gr.Interface(
|
| 4 |
theme=gr.themes.Base(),
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoConfig
|
| 3 |
+
import numpy as np
|
| 4 |
+
from scipy.special import softmax
|
| 5 |
import gradio as gr
|
| 6 |
+
torch.cuda.is_available()
|
| 7 |
+
|
| 8 |
+
model_path = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
| 9 |
+
|
| 10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 11 |
+
config = AutoConfig.from_pretrained(model_path)
|
| 12 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
| 13 |
+
|
| 14 |
+
def sentiment_analysis(text):
|
| 15 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 16 |
+
output = model(**encoded_input)
|
| 17 |
+
scores_ = output[0][0].detach().numpy()
|
| 18 |
+
scores_ = softmax(scores_)
|
| 19 |
+
labels = ['Negative', 'Neutral', 'Positive']
|
| 20 |
+
scores = {l: float(s) for (l, s) in zip(labels, scores_)}
|
| 21 |
+
return scores
|
| 22 |
|
| 23 |
demo = gr.Interface(
|
| 24 |
theme=gr.themes.Base(),
|