File size: 3,595 Bytes
139d7b2
827021c
2e786fb
827021c
 
2e786fb
 
 
 
827021c
57fc91e
 
fdbc146
827021c
 
 
 
 
fdbc146
e49c48c
 
 
fdbc146
827021c
 
 
 
fdbc146
2e786fb
 
 
827021c
 
fdbc146
d288725
 
 
 
 
827021c
d288725
fdbc146
 
 
 
2e786fb
 
fdbc146
d288725
 
2e786fb
fdbc146
2e786fb
fdbc146
d288725
2e786fb
d288725
827021c
57fc91e
 
fdbc146
 
 
 
57fc91e
 
 
fdbc146
 
 
 
 
57fc91e
 
 
 
fdbc146
57fc91e
fdbc146
57fc91e
 
fdbc146
57fc91e
 
 
fdbc146
 
 
8088244
fdbc146
 
8088244
 
57fc91e
 
fdbc146
 
 
 
 
 
 
 
 
 
 
57fc91e
fdbc146
 
 
57fc91e
fdbc146
 
57fc91e
fdbc146
 
57fc91e
fdbc146
 
57fc91e
 
 
 
 
cf8fd7e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
import json
from omegaconf import OmegaConf
import sys
import os
from PIL import Image
import torchvision.transforms as transforms

photos_folder = "Photos"

# Download model and config
repo_id = "Kiwinicki/sat2map-generator"
generator_path = hf_hub_download(repo_id=repo_id, filename="generator.pth")
config_path = hf_hub_download(repo_id=repo_id, filename="config.json")
model_path = hf_hub_download(repo_id=repo_id, filename="model.py")

# Add path to model
sys.path.append(os.path.dirname(model_path))
from model import Generator

# Load configuration
with open(config_path, "r") as f:
    config_dict = json.load(f)
cfg = OmegaConf.create(config_dict)

# Initialize model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
generator = Generator(cfg).to(device)
generator.load_state_dict(torch.load(generator_path, map_location=device))
generator.eval()

# Transformations
transform = transforms.Compose([
    transforms.Resize((256, 256)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])

def process_image(image):
    if image is None:
        return None
        
    # Convert to tensor
    image_tensor = transform(image).unsqueeze(0).to(device)
    
    # Inference
    with torch.no_grad():
        output_tensor = generator(image_tensor)
    
    # Prepare output
    output_image = output_tensor.squeeze(0).cpu()
    output_image = output_image * 0.5 + 0.5  # Denormalization
    output_image = transforms.ToPILImage()(output_image)
    
    return output_image

def load_images_from_folder(folder):
    images = []
    if not os.path.exists(folder):
        os.makedirs(folder)
        return images
        
    for filename in os.listdir(folder):
        if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
            img_path = os.path.join(folder, filename)
            try:
                img = Image.open(img_path)
                images.append((img, filename))
            except Exception as e:
                print(f"Error loading {filename}: {e}")
    return images

def app():
    images = load_images_from_folder(photos_folder)
    gallery_images = [img[0] for img in images] if images else []

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(label="Input Image", type="pil")
                clear_button = gr.Button("Clear")

            with gr.Column():
                gallery = gr.Gallery(
                    label="Image Gallery",
                    value=gallery_images,
                    columns=3,  # Set number of columns directly in the constructor
                    rows=2,
                    height="auto"
                )


            with gr.Column():
                output_image = gr.Image(label="Result Image", type="pil")
        
        # Handle gallery selection
        def on_select(evt: gr.SelectData):
            if 0 <= evt.index < len(images):
                return images[evt.index][0]
            return None
            
        gallery.select(
            fn=on_select,
            outputs=input_image
        )
        
        # Process image when input changes
        input_image.change(
            fn=process_image,
            inputs=input_image,
            outputs=output_image
        )
        
        # Clear button functionality
        clear_button.click(
            fn=lambda: None,
            outputs=input_image
        )

    demo.launch()

if __name__ == "__main__":
    app()