Spaces:
Sleeping
Sleeping
Koni
commited on
Commit
·
b81e5e4
1
Parent(s):
c865dfa
Adding images
Browse files- app.py +11 -72
- data/forlift.jpg +0 -0
- data/hall.jpg +0 -0
- loco.yaml +7 -0
app.py
CHANGED
|
@@ -1,18 +1,12 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
from huggingface_hub import hf_hub_download
|
| 4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
# make sure you have the following dependencies
|
| 7 |
-
# import torch
|
| 8 |
-
import numpy as np
|
| 9 |
-
# from models.common import DetectMultiBackend
|
| 10 |
-
# from utils.general import non_max_suppression, scale_boxes
|
| 11 |
-
# from utils.torch_utils import select_device, smart_inference_mode
|
| 12 |
-
# from utils.augmentations import letterbox
|
| 13 |
-
# import PIL.Image
|
| 14 |
|
| 15 |
-
#@smart_inference_mode()
|
| 16 |
@spaces.GPU
|
| 17 |
def yolov9_inference(img_path, model_id='YOLOv9-S_X_LOCO-converted.pt', img_size=640, conf_thres=0.1, iou_thres=0.4):
|
| 18 |
"""
|
|
@@ -27,36 +21,13 @@ def yolov9_inference(img_path, model_id='YOLOv9-S_X_LOCO-converted.pt', img_size
|
|
| 27 |
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
| 28 |
"""
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
# # Load the model
|
| 33 |
-
# model_path = download_models(model_id)
|
| 34 |
-
|
| 35 |
-
# # Initialize
|
| 36 |
-
# device = select_device('0')
|
| 37 |
-
# model = DetectMultiBackend(model_path, device="0", fp16=False, data='data/coco.yaml')
|
| 38 |
-
# stride, names, pt = model.stride, model.names, model.pt
|
| 39 |
-
|
| 40 |
-
# # Load image
|
| 41 |
-
# img = np.array(PIL.Image.open(img_path))
|
| 42 |
-
# img = letterbox(img0, img_size, stride=stride, auto=True)[0]
|
| 43 |
-
# img = img[:, :, ::-1].transpose(2, 0, 1)
|
| 44 |
-
# img = np.ascontiguousarray(img)
|
| 45 |
-
# img = torch.from_numpy(img).to(device).float()
|
| 46 |
-
# img /= 255.0
|
| 47 |
-
# if img.ndimension() == 3:
|
| 48 |
-
# img = img.unsqueeze(0)
|
| 49 |
-
|
| 50 |
-
# # Inference
|
| 51 |
-
# results = model(img, augment=False, visualize=False)
|
| 52 |
|
| 53 |
-
|
| 54 |
-
# results = non_max_suppression(results[0][0], conf_thres, iou_thres, classes=None, max_det=1000)
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
# return output[0]
|
| 59 |
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
def download_models(model_id):
|
|
@@ -64,38 +35,6 @@ def download_models(model_id):
|
|
| 64 |
token=os.getenv("HF_TOKEN"))
|
| 65 |
return f"./{model_id}"
|
| 66 |
|
| 67 |
-
# @spaces.GPU
|
| 68 |
-
# def yolov9_inference(img_path, model_id, image_size, conf_threshold, iou_threshold):
|
| 69 |
-
# """
|
| 70 |
-
# Load a YOLOv9 model, configure it, perform inference on an image, and optionally adjust
|
| 71 |
-
# the input size and apply test time augmentation.
|
| 72 |
-
|
| 73 |
-
# :param model_path: Path to the YOLOv9 model file.
|
| 74 |
-
# :param conf_threshold: Confidence threshold for NMS.
|
| 75 |
-
# :param iou_threshold: IoU threshold for NMS.
|
| 76 |
-
# :param img_path: Path to the image file.
|
| 77 |
-
# :param size: Optional, input size for inference.
|
| 78 |
-
# :return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
| 79 |
-
# """
|
| 80 |
-
# # Import YOLOv9
|
| 81 |
-
# import yolov9
|
| 82 |
-
|
| 83 |
-
# # Load the model
|
| 84 |
-
# model_path = download_models(model_id)
|
| 85 |
-
# model = yolov9.load(model_path, device="cuda:0")
|
| 86 |
-
|
| 87 |
-
# # Set model parameters
|
| 88 |
-
# model.conf = conf_threshold
|
| 89 |
-
# model.iou = iou_threshold
|
| 90 |
-
|
| 91 |
-
# # Perform inference
|
| 92 |
-
# results = model(img_path, size=image_size)
|
| 93 |
-
|
| 94 |
-
# # Optionally, show detection bounding boxes on image
|
| 95 |
-
# output = results.render()
|
| 96 |
-
|
| 97 |
-
# return output[0]
|
| 98 |
-
|
| 99 |
|
| 100 |
def app():
|
| 101 |
with gr.Blocks():
|
|
@@ -106,9 +45,9 @@ def app():
|
|
| 106 |
label="Model",
|
| 107 |
choices=[
|
| 108 |
"YOLOv9-S_X_LOCO-converted.pt",
|
| 109 |
-
"
|
| 110 |
"YOLOv9-E_X_LOCO-converted.pt",
|
| 111 |
-
"
|
| 112 |
],
|
| 113 |
value="YOLOv9-S_X_LOCO-converted.pt",
|
| 114 |
)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import numpy as np
|
|
|
|
| 3 |
import os
|
| 4 |
+
import spaces
|
| 5 |
+
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
from ultralytics import YOLO
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
|
|
|
| 10 |
@spaces.GPU
|
| 11 |
def yolov9_inference(img_path, model_id='YOLOv9-S_X_LOCO-converted.pt', img_size=640, conf_thres=0.1, iou_thres=0.4):
|
| 12 |
"""
|
|
|
|
| 21 |
:return: A tuple containing the detections (boxes, scores, categories) and the results object for further actions like displaying.
|
| 22 |
"""
|
| 23 |
|
| 24 |
+
model_path = download_models(model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
+
model = YOLO(model_path)
|
|
|
|
| 27 |
|
| 28 |
+
results = model.predict(img_path, conf=conf_thres, iou=iou_thres, imgsz=img_size)
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
return np.array(PIL.Image.open(img_path))
|
| 31 |
|
| 32 |
|
| 33 |
def download_models(model_id):
|
|
|
|
| 35 |
token=os.getenv("HF_TOKEN"))
|
| 36 |
return f"./{model_id}"
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
def app():
|
| 40 |
with gr.Blocks():
|
|
|
|
| 45 |
label="Model",
|
| 46 |
choices=[
|
| 47 |
"YOLOv9-S_X_LOCO-converted.pt",
|
| 48 |
+
"YOLOv9-S_X_LOCO.pt",
|
| 49 |
"YOLOv9-E_X_LOCO-converted.pt",
|
| 50 |
+
"YOLOv9-E_X_LOCO.pt",
|
| 51 |
],
|
| 52 |
value="YOLOv9-S_X_LOCO-converted.pt",
|
| 53 |
)
|
data/forlift.jpg
ADDED
|
data/hall.jpg
ADDED
|
loco.yaml
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
nc: 5
|
| 2 |
+
names:
|
| 3 |
+
0: small_load_carrier
|
| 4 |
+
1: forklift
|
| 5 |
+
2: pallet
|
| 6 |
+
3: stillage
|
| 7 |
+
4: pallet_truck
|