import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint def tensor_slice(x, begin, size): assert all([b >= 0 for b in begin]) size = [l - b if s == -1 else s for s, b, l in zip(size, begin, x.shape)] assert all([s >= 0 for s in size]) slices = [slice(b, b + s) for b, s in zip(begin, size)] return x[slices] # reshapes tensor start from dim i (inclusive) # to dim j (exclusive) to the desired shape # e.g. if x.shape = (b, thw, c) then # view_range(x, 1, 2, (t, h, w)) returns # x of shape (b, t, h, w, c) def view_range(x, i, j, shape): shape = tuple(shape) n_dims = len(x.shape) if i < 0: i = n_dims + i if j is None: j = n_dims elif j < 0: j = n_dims + j assert 0 <= i < j <= n_dims x_shape = x.shape target_shape = x_shape[:i] + shape + x_shape[j:] return x.view(target_shape) def shift_dim(x, src_dim=-1, dest_dim=-1, make_contiguous=True): n_dims = len(x.shape) if src_dim < 0: src_dim = n_dims + src_dim if dest_dim < 0: dest_dim = n_dims + dest_dim assert 0 <= src_dim < n_dims and 0 <= dest_dim < n_dims dims = list(range(n_dims)) del dims[src_dim] permutation = [] ctr = 0 for i in range(n_dims): if i == dest_dim: permutation.append(src_dim) else: permutation.append(dims[ctr]) ctr += 1 x = x.permute(permutation) if make_contiguous: x = x.contiguous() return x class AttentionStack(nn.Module): def __init__( self, shape, embd_dim, n_head, n_layer, dropout, attn_type, attn_dropout, class_cond_dim, frame_cond_shape, ): super().__init__() self.shape = shape self.embd_dim = embd_dim self.use_frame_cond = frame_cond_shape is not None self.right_shift = RightShift(embd_dim) self.pos_embd = AddBroadcastPosEmbed( shape=shape, embd_dim=embd_dim ) self.attn_nets = nn.ModuleList( [ AttentionBlock( shape=shape, embd_dim=embd_dim, n_head=n_head, n_layer=n_layer, dropout=dropout, attn_type=attn_type, attn_dropout=attn_dropout, class_cond_dim=class_cond_dim, frame_cond_shape=frame_cond_shape ) for i in range(n_layer) ] ) def forward(self, x, cond, decode_step, decode_idx): """ Args ------ x: (b, d1, d2, ..., dn, embd_dim) cond: a dictionary of conditioning tensors (below is used only when sampling for fast decoding) decode: the enumerated rasterscan order of the current idx being sampled decode_step: a tuple representing the current idx being sampled """ x = self.right_shift(x, decode_step) x = self.pos_embd(x, decode_step, decode_idx) for net in self.attn_nets: x = net(x, cond, decode_step, decode_idx) return x class AttentionBlock(nn.Module): def __init__(self, shape, embd_dim, n_head, n_layer, dropout, attn_type, attn_dropout, class_cond_dim, frame_cond_shape): super().__init__() self.use_frame_cond = frame_cond_shape is not None self.pre_attn_norm = LayerNorm(embd_dim, class_cond_dim) self.post_attn_dp = nn.Dropout(dropout) self.attn = MultiHeadAttention(shape, embd_dim, embd_dim, n_head, n_layer, causal=True, attn_type=attn_type, attn_kwargs=dict(attn_dropout=attn_dropout)) if frame_cond_shape is not None: enc_len = np.prod(frame_cond_shape[:-1]) self.pre_enc_norm = LayerNorm(embd_dim, class_cond_dim) self.post_enc_dp = nn.Dropout(dropout) self.enc_attn = MultiHeadAttention(shape, embd_dim, frame_cond_shape[-1], n_head, n_layer, attn_type='full', attn_kwargs=dict(attn_dropout=0.), causal=False) self.pre_fc_norm = LayerNorm(embd_dim, class_cond_dim) self.post_fc_dp = nn.Dropout(dropout) self.fc_block = nn.Sequential( nn.Linear(in_features=embd_dim, out_features=embd_dim * 4), GeLU2(), nn.Linear(in_features=embd_dim * 4, out_features=embd_dim), ) def forward(self, x, cond, decode_step, decode_idx): h = self.pre_attn_norm(x, cond) if self.training: h = checkpoint(self.attn, h, h, h, decode_step, decode_idx) else: h = self.attn(h, h, h, decode_step, decode_idx) h = self.post_attn_dp(h) x = x + h if self.use_frame_cond: h = self.pre_enc_norm(x, cond) if self.training: h = checkpoint(self.enc_attn, h, cond['frame_cond'], cond['frame_cond'], decode_step, decode_idx) else: h = self.enc_attn(h, cond['frame_cond'], cond['frame_cond'], decode_step, decode_idx) h = self.post_enc_dp(h) x = x + h h = self.pre_fc_norm(x, cond) if self.training: h = checkpoint(self.fc_block, h) else: h = self.fc_block(h) h = self.post_fc_dp(h) x = x + h return x class MultiHeadAttention(nn.Module): def __init__(self, shape, dim_q, dim_kv, n_head, n_layer, causal, attn_type, attn_kwargs): super().__init__() self.causal = causal self.shape = shape self.d_k = dim_q // n_head self.d_v = dim_kv // n_head self.n_head = n_head self.w_qs = nn.Linear(dim_q, n_head * self.d_k, bias=False) # q self.w_qs.weight.data.normal_(std=1.0 / np.sqrt(dim_q)) self.w_ks = nn.Linear(dim_kv, n_head * self.d_k, bias=False) # k self.w_ks.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) self.w_vs = nn.Linear(dim_kv, n_head * self.d_v, bias=False) # v self.w_vs.weight.data.normal_(std=1.0 / np.sqrt(dim_kv)) self.fc = nn.Linear(n_head * self.d_v, dim_q, bias=True) # c self.fc.weight.data.normal_(std=1.0 / np.sqrt(dim_q * n_layer)) if attn_type == 'full': self.attn = FullAttention(shape, causal, **attn_kwargs) elif attn_type == 'axial': assert not causal, 'causal axial attention is not supported' self.attn = AxialAttention(len(shape), **attn_kwargs) elif attn_type == 'sparse': self.attn = SparseAttention(shape, n_head, causal, **attn_kwargs) self.cache = None def forward(self, q, k, v, decode_step=None, decode_idx=None): """ Compute multi-head attention Args q, k, v: a [b, d1, ..., dn, c] tensor or a [b, 1, ..., 1, c] tensor if decode_step is not None Returns The output after performing attention """ # compute k, q, v d_k, d_v, n_head = self.d_k, self.d_v, self.n_head q = view_range(self.w_qs(q), -1, None, (n_head, d_k)) k = view_range(self.w_ks(k), -1, None, (n_head, d_k)) v = view_range(self.w_vs(v), -1, None, (n_head, d_v)) # b x n_head x seq_len x d # (b, *d_shape, n_head, d) -> (b, n_head, *d_shape, d) q = shift_dim(q, -2, 1) k = shift_dim(k, -2, 1) v = shift_dim(v, -2, 1) # fast decoding if decode_step is not None: if decode_step == 0: if self.causal: k_shape = (q.shape[0], n_head, *self.shape, self.d_k) v_shape = (q.shape[0], n_head, *self.shape, self.d_v) self.cache = dict(k=torch.zeros(k_shape, dtype=k.dtype, device=q.device), v=torch.zeros(v_shape, dtype=v.dtype, device=q.device)) else: # cache only once in the non-causal case self.cache = dict(k=k.clone(), v=v.clone()) if self.causal: idx = (slice(None, None), slice(None, None), *[slice(i, i+ 1) for i in decode_idx]) self.cache['k'][idx] = k self.cache['v'][idx] = v k, v = self.cache['k'], self.cache['v'] a = self.attn(q, k, v, decode_step, decode_idx) # (b, *d_shape, n_head, d) -> (b, *d_shape, n_head * d) a = shift_dim(a, 1, -2).flatten(start_dim=-2) a = self.fc(a) # (b x seq_len x embd_dim) return a ############## Attention ####################### class FullAttention(nn.Module): def __init__(self, shape, causal, attn_dropout): super().__init__() self.causal = causal self.attn_dropout = attn_dropout seq_len = np.prod(shape) if self.causal: self.register_buffer('mask', torch.tril(torch.ones(seq_len, seq_len))) def forward(self, q, k, v, decode_step, decode_idx): mask = self.mask if self.causal else None if decode_step is not None and mask is not None: mask = mask[[decode_step]] old_shape = q.shape[2:-1] q = q.flatten(start_dim=2, end_dim=-2) k = k.flatten(start_dim=2, end_dim=-2) v = v.flatten(start_dim=2, end_dim=-2) out = scaled_dot_product_attention(q, k, v, mask=mask, attn_dropout=self.attn_dropout, training=self.training) return view_range(out, 2, 3, old_shape) class AxialAttention(nn.Module): def __init__(self, n_dim, axial_dim): super().__init__() if axial_dim < 0: axial_dim = 2 + n_dim + 1 + axial_dim else: axial_dim += 2 # account for batch, head, dim self.axial_dim = axial_dim def forward(self, q, k, v, decode_step, decode_idx): q = shift_dim(q, self.axial_dim, -2).flatten(end_dim=-3) k = shift_dim(k, self.axial_dim, -2).flatten(end_dim=-3) v = shift_dim(v, self.axial_dim, -2) old_shape = list(v.shape) v = v.flatten(end_dim=-3) out = scaled_dot_product_attention(q, k, v, training=self.training) out = out.view(*old_shape) out = shift_dim(out, -2, self.axial_dim) return out class SparseAttention(nn.Module): ops = dict() attn_mask = dict() block_layout = dict() def __init__(self, shape, n_head, causal, num_local_blocks=4, block=32, attn_dropout=0.): # does not use attn_dropout super().__init__() self.causal = causal self.shape = shape self.sparsity_config = StridedSparsityConfig(shape=shape, n_head=n_head, causal=causal, block=block, num_local_blocks=num_local_blocks) if self.shape not in SparseAttention.block_layout: SparseAttention.block_layout[self.shape] = self.sparsity_config.make_layout() if causal and self.shape not in SparseAttention.attn_mask: SparseAttention.attn_mask[self.shape] = self.sparsity_config.make_sparse_attn_mask() def get_ops(self): try: from deepspeed.ops.sparse_attention import MatMul, Softmax except: raise Exception('Error importing deepspeed. Please install using `DS_BUILD_SPARSE_ATTN=1 pip install deepspeed`') if self.shape not in SparseAttention.ops: sparsity_layout = self.sparsity_config.make_layout() sparse_dot_sdd_nt = MatMul(sparsity_layout, self.sparsity_config.block, 'sdd', trans_a=False, trans_b=True) sparse_dot_dsd_nn = MatMul(sparsity_layout, self.sparsity_config.block, 'dsd', trans_a=False, trans_b=False) sparse_softmax = Softmax(sparsity_layout, self.sparsity_config.block) SparseAttention.ops[self.shape] = (sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax) return SparseAttention.ops[self.shape] def forward(self, q, k, v, decode_step, decode_idx): if self.training and self.shape not in SparseAttention.ops: self.get_ops() SparseAttention.block_layout[self.shape] = SparseAttention.block_layout[self.shape].to(q) if self.causal: SparseAttention.attn_mask[self.shape] = SparseAttention.attn_mask[self.shape].to(q).type_as(q) attn_mask = SparseAttention.attn_mask[self.shape] if self.causal else None old_shape = q.shape[2:-1] q = q.flatten(start_dim=2, end_dim=-2) k = k.flatten(start_dim=2, end_dim=-2) v = v.flatten(start_dim=2, end_dim=-2) if decode_step is not None: mask = self.sparsity_config.get_non_block_layout_row(SparseAttention.block_layout[self.shape], decode_step) out = scaled_dot_product_attention(q, k, v, mask=mask, training=self.training) else: if q.shape != k.shape or k.shape != v.shape: raise Exception('SparseAttention only support self-attention') sparse_dot_sdd_nt, sparse_dot_dsd_nn, sparse_softmax = self.get_ops() scaling = float(q.shape[-1]) ** -0.5 attn_output_weights = sparse_dot_sdd_nt(q, k) if attn_mask is not None: attn_output_weights = attn_output_weights.masked_fill(attn_mask == 0, float('-inf')) attn_output_weights = sparse_softmax( attn_output_weights, scale=scaling ) out = sparse_dot_dsd_nn(attn_output_weights, v) return view_range(out, 2, 3, old_shape) class StridedSparsityConfig(object): """ Strided Sparse configuration specified in https://arxiv.org/abs/1904.10509 that generalizes to arbitrary dimensions """ def __init__(self, shape, n_head, causal, block, num_local_blocks): self.n_head = n_head self.shape = shape self.causal = causal self.block = block self.num_local_blocks = num_local_blocks assert self.num_local_blocks >= 1, 'Must have at least 1 local block' assert self.seq_len % self.block == 0, 'seq len must be divisible by block size' self._block_shape = self._compute_block_shape() self._block_shape_cum = self._block_shape_cum_sizes() @property def seq_len(self): return np.prod(self.shape) @property def num_blocks(self): return self.seq_len // self.block def set_local_layout(self, layout): num_blocks = self.num_blocks for row in range(0, num_blocks): end = min(row + self.num_local_blocks, num_blocks) for col in range( max(0, row - self.num_local_blocks), (row + 1 if self.causal else end)): layout[:, row, col] = 1 return layout def set_global_layout(self, layout): num_blocks = self.num_blocks n_dim = len(self._block_shape) for row in range(num_blocks): assert self._to_flattened_idx(self._to_unflattened_idx(row)) == row cur_idx = self._to_unflattened_idx(row) # no strided attention over last dim for d in range(n_dim - 1): end = self._block_shape[d] for i in range(0, (cur_idx[d] + 1 if self.causal else end)): new_idx = list(cur_idx) new_idx[d] = i new_idx = tuple(new_idx) col = self._to_flattened_idx(new_idx) layout[:, row, col] = 1 return layout def make_layout(self): layout = torch.zeros((self.n_head, self.num_blocks, self.num_blocks), dtype=torch.int64) layout = self.set_local_layout(layout) layout = self.set_global_layout(layout) return layout def make_sparse_attn_mask(self): block_layout = self.make_layout() assert block_layout.shape[1] == block_layout.shape[2] == self.num_blocks num_dense_blocks = block_layout.sum().item() attn_mask = torch.ones(num_dense_blocks, self.block, self.block) counter = 0 for h in range(self.n_head): for i in range(self.num_blocks): for j in range(self.num_blocks): elem = block_layout[h, i, j].item() if elem == 1: assert i >= j if i == j: # need to mask within block on diagonals attn_mask[counter] = torch.tril(attn_mask[counter]) counter += 1 assert counter == num_dense_blocks return attn_mask.unsqueeze(0) def get_non_block_layout_row(self, block_layout, row): block_row = row // self.block block_row = block_layout[:, [block_row]] # n_head x 1 x n_blocks block_row = block_row.repeat_interleave(self.block, dim=-1) block_row[:, :, row + 1:] = 0. return block_row ############# Helper functions ########################## def _compute_block_shape(self): n_dim = len(self.shape) cum_prod = 1 for i in range(n_dim - 1, -1, -1): cum_prod *= self.shape[i] if cum_prod > self.block: break assert cum_prod % self.block == 0 new_shape = (*self.shape[:i], cum_prod // self.block) assert np.prod(new_shape) == np.prod(self.shape) // self.block return new_shape def _block_shape_cum_sizes(self): bs = np.flip(np.array(self._block_shape)) return tuple(np.flip(np.cumprod(bs)[:-1])) + (1,) def _to_flattened_idx(self, idx): assert len(idx) == len(self._block_shape), f"{len(idx)} != {len(self._block_shape)}" flat_idx = 0 for i in range(len(self._block_shape)): flat_idx += idx[i] * self._block_shape_cum[i] return flat_idx def _to_unflattened_idx(self, flat_idx): assert flat_idx < np.prod(self._block_shape) idx = [] for i in range(len(self._block_shape)): idx.append(flat_idx // self._block_shape_cum[i]) flat_idx %= self._block_shape_cum[i] return tuple(idx) ################ Spatiotemporal broadcasted positional embeddings ############### class AddBroadcastPosEmbed(nn.Module): def __init__(self, shape, embd_dim, dim=-1): super().__init__() assert dim in [-1, 1] # only first or last dim supported self.shape = shape self.n_dim = n_dim = len(shape) self.embd_dim = embd_dim self.dim = dim assert embd_dim % n_dim == 0, f"{embd_dim} % {n_dim} != 0" self.emb = nn.ParameterDict({ f'd_{i}': nn.Parameter(torch.randn(shape[i], embd_dim // n_dim) * 0.01 if dim == -1 else torch.randn(embd_dim // n_dim, shape[i]) * 0.01) for i in range(n_dim) }) def forward(self, x, decode_step=None, decode_idx=None): embs = [] for i in range(self.n_dim): e = self.emb[f'd_{i}'] if self.dim == -1: # (1, 1, ..., 1, self.shape[i], 1, ..., -1) e = e.view(1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1)), -1) e = e.expand(1, *self.shape, -1) else: e = e.view(1, -1, *((1,) * i), self.shape[i], *((1,) * (self.n_dim - i - 1))) e = e.expand(1, -1, *self.shape) embs.append(e) embs = torch.cat(embs, dim=self.dim) if decode_step is not None: embs = tensor_slice(embs, [0, *decode_idx, 0], [x.shape[0], *(1,) * self.n_dim, x.shape[-1]]) return x + embs ################# Helper Functions ################################### def scaled_dot_product_attention(q, k, v, mask=None, attn_dropout=0., training=True): # Performs scaled dot-product attention over the second to last dimension dn # (b, n_head, d1, ..., dn, d) attn = torch.matmul(q, k.transpose(-1, -2)) attn = attn / np.sqrt(q.shape[-1]) if mask is not None: attn = attn.masked_fill(mask == 0, float('-inf')) attn_float = F.softmax(attn, dim=-1) attn = attn_float.type_as(attn) # b x n_head x d1 x ... x dn x d attn = F.dropout(attn, p=attn_dropout, training=training) a = torch.matmul(attn, v) # b x n_head x d1 x ... x dn x d return a class RightShift(nn.Module): def __init__(self, embd_dim): super().__init__() self.embd_dim = embd_dim self.sos = nn.Parameter(torch.FloatTensor(embd_dim).normal_(std=0.02), requires_grad=True) def forward(self, x, decode_step): if decode_step is not None and decode_step > 0: return x x_shape = list(x.shape) x = x.flatten(start_dim=1, end_dim=-2) # (b, seq_len, embd_dim) sos = torch.ones(x_shape[0], 1, self.embd_dim, dtype=torch.float32).to(self.sos) * self.sos sos = sos.type_as(x) x = torch.cat([sos, x[:, :-1, :]], axis=1) x = x.view(*x_shape) return x class GeLU2(nn.Module): def forward(self, x): return (1.702 * x).sigmoid() * x class LayerNorm(nn.Module): def __init__(self, embd_dim, class_cond_dim): super().__init__() self.conditional = class_cond_dim is not None if self.conditional: self.w = nn.Linear(class_cond_dim, embd_dim, bias=False) nn.init.constant_(self.w.weight.data, 1. / np.sqrt(class_cond_dim)) self.wb = nn.Linear(class_cond_dim, embd_dim, bias=False) else: self.g = nn.Parameter(torch.ones(embd_dim, dtype=torch.float32), requires_grad=True) self.b = nn.Parameter(torch.zeros(embd_dim, dtype=torch.float32), requires_grad=True) def forward(self, x, cond): if self.conditional: # (b, cond_dim) g = 1 + self.w(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) # (b, ..., embd_dim) b = self.wb(cond['class_cond']).view(x.shape[0], *(1,)*(len(x.shape)-2), x.shape[-1]) else: g = self.g # (embd_dim,) b = self.b x_float = x.float() mu = x_float.mean(dim=-1, keepdims=True) s = (x_float - mu).square().mean(dim=-1, keepdims=True) x_float = (x_float - mu) * (1e-5 + s.rsqrt()) # (b, ..., embd_dim) x_float = x_float * g + b x = x_float.type_as(x) return x