from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch # Load the trained model tokenizer = AutoTokenizer.from_pretrained("Kunalatmosoft/imdb_model") model = AutoModelForSequenceClassification.from_pretrained("Kunalatmosoft/imdb_model") # Function to predict sentiment def predict_sentiment(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) prediction = torch.argmax(outputs.logits, dim=1).item() return "Positive" if prediction == 1 else "Negative" # Example usage print(predict_sentiment("This movie was amazing!")) print(predict_sentiment("I didn't like this movie."))