DRA-Ctrl / app.py
caohy666's picture
<feat> complete app.py.
ba53076
raw
history blame
13.2 kB
import os
if 'SPACES_APP' in os.environ:
os.system("pip install flash-attn==2.7.3 --no-build-isolation")
import sys
import torch
import diffusers
import transformers
import argparse
import peft
import copy
import cv2
import gradio as gr
import numpy as np
from peft import LoraConfig
from omegaconf import OmegaConf
from safetensors.torch import safe_open
from PIL import Image, ImageDraw, ImageFilter
from huggingface_hub import hf_hub_download
from transformers import pipeline
from models import HunyuanVideoTransformer3DModel
from pipelines import HunyuanVideoImageToVideoPipeline
header = """
# DRA-Ctrl Gradio App
<div style="text-align: center; display: flex; justify-content: left; gap: 5px;">
<a href="https://arxiv.org/pdf/2505.23325"><img src="https://img.shields.io/badge/ariXv-Paper-A42C25.svg" alt="arXiv"></a>
<a href="https://huggingface.co/Kunbyte/DRA-Ctrl"><img src="https://img.shields.io/badge/🤗-Model-ffbd45.svg" alt="HuggingFace"></a>
<a href="https://github.com/Kunbyte-AI/DRA-Ctrl"><img src="https://img.shields.io/badge/GitHub-Code-blue.svg?logo=github&" alt="GitHub"></a>
<a href="https://dra-ctrl-2025.github.io/DRA-Ctrl/"><img src="https://img.shields.io/badge/Project-Page-blue" alt="Project"></a>
</div>
"""
notice = """
For easier testing, in spatially-aligned image generation tasks, when passing the condition image to `gradio_app`,
there's no need to manually input edge maps, depth maps, or other condition images - only the original image is required.
The corresponding condition images will be automatically extracted.
"""
@spaces.GPU
def process_image_and_text(condition_image, target_prompt, condition_image_prompt, task):
# init models
transformer = HunyuanVideoTransformer3DModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="transformer",
inference_subject_driven=task in ['subject_driven'])
scheduler = diffusers.FlowMatchEulerDiscreteScheduler()
vae = diffusers.AutoencoderKLHunyuanVideo.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="vae")
text_encoder = transformers.LlavaForConditionalGeneration.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder")
text_encoder_2 = transformers.CLIPTextModel.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="text_encoder_2")
tokenizer = transformers.AutoTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer")
tokenizer_2 = transformers.CLIPTokenizer.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="tokenizer_2")
image_processor = transformers.CLIPImageProcessor.from_pretrained('hunyuanvideo-community/HunyuanVideo-I2V',
subfolder="image_processor")
device = "cuda" if torch.cuda.is_available() else "cpu"
weight_dtype = torch.bfloat16
transformer.requires_grad_(False)
vae.requires_grad_(False).to(device, dtype=weight_dtype)
text_encoder.requires_grad_(False).to(device, dtype=weight_dtype)
text_encoder_2.requires_grad_(False).to(device, dtype=weight_dtype)
transformer.to(device, dtype=weight_dtype)
vae.enable_tiling()
vae.enable_slicing()
# insert LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=16,
init_lora_weights="gaussian",
target_modules=[
'attn.to_k', 'attn.to_q', 'attn.to_v', 'attn.to_out.0',
'attn.add_k_proj', 'attn.add_q_proj', 'attn.add_v_proj', 'attn.to_add_out',
'ff.net.0.proj', 'ff.net.2',
'ff_context.net.0.proj', 'ff_context.net.2',
'norm1_context.linear', 'norm1.linear',
'norm.linear', 'proj_mlp', 'proj_out',
]
)
transformer.add_adapter(lora_config)
# hack LoRA forward
def create_hacked_forward(module):
lora_forward = module.forward
non_lora_forward = module.base_layer.forward
img_sequence_length = int((args.img_size / 8 / 2) ** 2)
encoder_sequence_length = 144 + 252 # encoder sequence: 144 img 252 txt
num_imgs = 4
num_generated_imgs = 3
num_encoder_sequences = 2 if args.task in ['subject_driven', 'style_transfer'] else 1
def hacked_lora_forward(self, x, *args, **kwargs):
if x.shape[1] == img_sequence_length * num_imgs and len(x.shape) > 2:
return torch.cat((
lora_forward(x[:, :-img_sequence_length*num_generated_imgs], *args, **kwargs),
non_lora_forward(x[:, -img_sequence_length*num_generated_imgs:], *args, **kwargs)
), dim=1)
elif x.shape[1] == encoder_sequence_length * num_encoder_sequences or x.shape[1] == encoder_sequence_length:
return lora_forward(x, *args, **kwargs)
elif x.shape[1] == img_sequence_length * num_imgs + encoder_sequence_length * num_encoder_sequences:
return torch.cat((
lora_forward(x[:, :(num_imgs - num_generated_imgs)*img_sequence_length], *args, **kwargs),
non_lora_forward(x[:, (num_imgs - num_generated_imgs)*img_sequence_length:-num_encoder_sequences*encoder_sequence_length], *args, **kwargs),
lora_forward(x[:, -num_encoder_sequences*encoder_sequence_length:], *args, **kwargs)
), dim=1)
elif x.shape[1] == 3072:
return non_lora_forward(x, *args, **kwargs)
else:
raise ValueError(
f"hacked_lora_forward receives unexpected sequence length: {x.shape[1]}, input shape: {x.shape}!"
)
return hacked_lora_forward.__get__(module, type(module))
for n, m in transformer.named_modules():
if isinstance(m, peft.tuners.lora.layer.Linear):
m.forward = create_hacked_forward(m)
# load LoRA weights
model_root = hf_hub_download(
repo_id="Kunbyte/DRA-Ctrl",
filename=f"{task}.safetensors",
resume_download=True)
try:
with safe_open(model_root, framework="pt") as f:
lora_weights = {}
for k in f.keys():
param = f.get_tensor(k)
if k.endswith(".weight"):
k = k.replace('.weight', '.default.weight')
lora_weights[k] = param
transformer.load_state_dict(lora_weights, strict=False)
except Exception as e:
raise ValueError(f'{e}')
transformer.requires_grad_(False)
pipe = HunyuanVideoImageToVideoPipeline(
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
vae=vae,
scheduler=copy.deepcopy(scheduler),
text_encoder_2=text_encoder_2,
tokenizer_2=tokenizer_2,
image_processor=image_processor,
)
# start generation
c_txt = None if condition_image_prompt == "" else condition_image_prompt
c_img = condition_image.resize((512, 512))
t_txt = target_prompt
if args.task not in ['subject_driven', 'style_transfer']:
if args.task == "canny":
def get_canny_edge(img):
img_np = np.array(img)
img_gray = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(img_gray, 100, 200)
edges_tmp = Image.fromarray(edges).convert("RGB")
edges_tmp.save(os.path.join(save_dir, f"edges.png"))
edges[edges == 0] = 128
return Image.fromarray(edges).convert("RGB")
c_img = get_canny_edge(c_img)
elif args.task == "coloring":
c_img = (
c_img.resize((args.img_size, args.img_size))
.convert("L")
.convert("RGB")
)
elif args.task == "deblurring":
blur_radius = 10
c_img = (
c_img.convert("RGB")
.filter(ImageFilter.GaussianBlur(blur_radius))
.resize((args.img_size, args.img_size))
.convert("RGB")
)
elif args.task == "depth":
def get_depth_map(img):
from transformers import pipeline
depth_pipe = pipeline(
task="depth-estimation",
model="LiheYoung/depth-anything-small-hf",
device="cpu",
)
return depth_pipe(img)["depth"].convert("RGB").resize((args.img_size, args.img_size))
c_img = get_depth_map(c_img)
c_img.save(os.path.join(save_dir, f"depth.png"))
k = (255 - 128) / 255
b = 128
c_img = c_img.point(lambda x: k * x + b)
elif args.task == "depth_pred":
c_img = c_img
elif args.task == "fill":
c_img = c_img.resize((args.img_size, args.img_size)).convert("RGB")
x1, x2 = args.fill_x1, args.fill_x2
y1, y2 = args.fill_y1, args.fill_y2
mask = Image.new("L", (args.img_size, args.img_size), 0)
draw = ImageDraw.Draw(mask)
draw.rectangle((x1, y1, x2, y2), fill=255)
if args.inpainting:
mask = Image.eval(mask, lambda a: 255 - a)
c_img = Image.composite(
c_img,
Image.new("RGB", (args.img_size, args.img_size), (255, 255, 255)),
mask
)
c_img.save(os.path.join(save_dir, f"mask.png"))
c_img = Image.composite(
c_img,
Image.new("RGB", (args.img_size, args.img_size), (128, 128, 128)),
mask
)
elif args.task == "sr":
c_img = c_img.resize((int(args.img_size / 4), int(args.img_size / 4))).convert("RGB")
c_img.save(os.path.join(save_dir, f"low_resolution.png"))
c_img = c_img.resize((args.img_size, args.img_size))
c_img.save(os.path.join(save_dir, f"low_to_high.png"))
gen_img = pipe(
image=c_img,
prompt=[t_txt.strip()],
prompt_condition=[c_txt.strip()] if c_txt is not None else None,
prompt_2=[t_txt],
height=512,
width=512,
num_frames=5,
num_inference_steps=50,
guidance_scale=6.0,
num_videos_per_prompt=1,
generator=torch.Generator(device=pipe.transformer.device).manual_seed(0),
output_type='pt',
image_embed_interleave=4,
frame_gap=48,
mixup=True,
mixup_num_imgs=2,
).frames
gen_img = gen_img[:, 0:1, :, :, :]
gen_img = gen_img.squeeze(0).squeeze(0).cpu().to(torch.float32).numpy()
gen_img = np.transpose(gen_img, (1, 2, 0))
gen_img = (gen_img * 255).astype(np.uint8)
gen_img = Image.fromarray(gen_img)
return gen_img
def create_app():
with gr.Blocks() as app:
gr.Markdown(header, elem_id="header")
with gr.Row(equal_height=False):
with gr.Column(variant="panel", elem_classes="inputPanel"):
condition_image = gr.Image(
type="pil", label="Condition Image", width=300, elem_id="input"
)
task = gr.Radio(
[
("Subject-driven Image Generation", "subject_driven"),
("Canny-to-Image", "canny"),
("Colorization", "coloring"),
("Deblurring", "deblurring"),
("Depth-to-Image", "depth"),
("Depth Prediction", "depth_pred"),
("In/Out-Painting", "fill"),
("Super-Resolution", "sr"),
("Style Transfer", "style_transfer")
],
label="Task Selection",
value="subject_driven",
interactive=True,
elem_id="task_selection"
)
gr.Markdown(notice, elem_id="notice")
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="text")
condition_image_prompt = gr.Textbox(lines=2, label="Condition Image Prompt", elem_id="text")
submit_btn = gr.Button("Run", elem_id="submit_btn")
with gr.Column(variant="panel", elem_classes="outputPanel"):
output_image = gr.Image(type="pil", elem_id="output")
submit_btn.click(
fn=process_image_and_text,
inputs=[condition_image, target_prompt, condition_image_prompt, task],
outputs=output_image,
)
return app
if __name__ == "__main__":
create_app().launch(debug=True, ssr_mode=False)