Spaces:
Running
on
Zero
Running
on
Zero
<feat> optimize output format and add examples
Browse files- .gitignore +3 -1
- app.py +187 -12
- assets/README.md +1 -0
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
__pycache__/
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
*.jpg
|
3 |
+
*.png
|
app.py
CHANGED
@@ -9,6 +9,8 @@ import copy
|
|
9 |
import cv2
|
10 |
import spaces
|
11 |
import gc
|
|
|
|
|
12 |
import gradio as gr
|
13 |
import numpy as np
|
14 |
|
@@ -285,8 +287,167 @@ def process_image_and_text(condition_image, target_prompt, condition_image_promp
|
|
285 |
out = (out * 255).astype(np.uint8)
|
286 |
out = Image.fromarray(out)
|
287 |
output_images.append(out)
|
288 |
-
|
289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
290 |
|
291 |
def create_app():
|
292 |
with gr.Blocks() as app:
|
@@ -315,7 +476,8 @@ def create_app():
|
|
315 |
)
|
316 |
gr.Markdown(notice, elem_id="notice")
|
317 |
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="tp")
|
318 |
-
|
|
|
319 |
random_seed = gr.Number(label="Random Seed", precision=0, value=0, elem_id="seed")
|
320 |
num_steps = gr.Number(label="Diffusion Inference Steps", precision=0, value=50, elem_id="steps")
|
321 |
inpainting = gr.Checkbox(label="Inpainting", value=False, elem_id="inpainting")
|
@@ -327,20 +489,33 @@ def create_app():
|
|
327 |
|
328 |
with gr.Column(variant="panel", elem_classes="outputPanel"):
|
329 |
# output_image = gr.Image(type="pil", elem_id="output")
|
330 |
-
output_images = gr.Gallery(
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
)
|
339 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
submit_btn.click(
|
341 |
fn=process_image_and_text,
|
342 |
inputs=[condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
|
343 |
-
outputs=
|
344 |
)
|
345 |
|
346 |
return app
|
|
|
9 |
import cv2
|
10 |
import spaces
|
11 |
import gc
|
12 |
+
import tempfile
|
13 |
+
import imageio
|
14 |
import gradio as gr
|
15 |
import numpy as np
|
16 |
|
|
|
287 |
out = (out * 255).astype(np.uint8)
|
288 |
out = Image.fromarray(out)
|
289 |
output_images.append(out)
|
290 |
+
|
291 |
+
# video = [np.array(img.convert('RGB')) for img in output_images[1:] + [output_images[0]]]
|
292 |
+
# video = np.stack(video, axis=0)
|
293 |
+
|
294 |
+
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as f:
|
295 |
+
video_path = f.name
|
296 |
+
imageio.mimsave(video_path, output_images[1:]+[output_images[0]], fps=5)
|
297 |
+
|
298 |
+
return output_images[0], video_path
|
299 |
+
|
300 |
+
def get_samples():
|
301 |
+
sample_list = [
|
302 |
+
{
|
303 |
+
"task": "subject_driven",
|
304 |
+
"input": "assets/subject_driven_image_generation_dreambench_input.jpg",
|
305 |
+
"target_prompt": "a cat in a chef outfit",
|
306 |
+
"condition_image_prompt": "a cat",
|
307 |
+
"output": "assets/subject_driven_image_generation_dreambench_output.png",
|
308 |
+
"inpainting": False,
|
309 |
+
"fill_x1": None,
|
310 |
+
"fill_x2": None,
|
311 |
+
"fill_y1": None,
|
312 |
+
"fill_y2": None,
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"task": "subject_driven",
|
316 |
+
"input": "assets/subject_driven_image_generation_input.jpg",
|
317 |
+
"target_prompt": "The woman stands in a snowy forest, captured in a half-portrait",
|
318 |
+
"condition_image_prompt": "Woman in cream knit sweater sits calmly by a crackling fireplace, surrounded by warm candlelight and rustic wooden shelves",
|
319 |
+
"output": "assets/subject_driven_image_generation_output.png",
|
320 |
+
"inpainting": False,
|
321 |
+
"fill_x1": None,
|
322 |
+
"fill_x2": None,
|
323 |
+
"fill_y1": None,
|
324 |
+
"fill_y2": None,
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"task": "canny",
|
328 |
+
"input": "assets/canny_to_image_input.jpg",
|
329 |
+
"target_prompt": "Mosquito frozen in clear ice cube on sand, glowing sunset casting golden light with misty halo around ice",
|
330 |
+
"condition_image_prompt": "",
|
331 |
+
"output": "assets/canny_to_image_output.png",
|
332 |
+
"inpainting": False,
|
333 |
+
"fill_x1": None,
|
334 |
+
"fill_x2": None,
|
335 |
+
"fill_y1": None,
|
336 |
+
"fill_y2": None,
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"task": "coloring",
|
340 |
+
"input": "assets/colorization_input.jpg",
|
341 |
+
"target_prompt": "A vibrant young woman with rainbow glasses, yellow eyes, and colorful feather accessory against a bright yellow background",
|
342 |
+
"condition_image_prompt": "",
|
343 |
+
"output": "assets/colorization_output.png",
|
344 |
+
"inpainting": False,
|
345 |
+
"fill_x1": None,
|
346 |
+
"fill_x2": None,
|
347 |
+
"fill_y1": None,
|
348 |
+
"fill_y2": None,
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"task": "deblurring",
|
352 |
+
"input": "assets/deblurring_input.jpg",
|
353 |
+
"target_prompt": "Vibrant rainbow ball creates dramatic splash in clear water, bubbles swirling against crisp white background",
|
354 |
+
"condition_image_prompt": "",
|
355 |
+
"output": "assets/deblurring_output.png",
|
356 |
+
"inpainting": False,
|
357 |
+
"fill_x1": None,
|
358 |
+
"fill_x2": None,
|
359 |
+
"fill_y1": None,
|
360 |
+
"fill_y2": None,
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"task": "depth",
|
364 |
+
"input": "assets/depth_to_image_input.jpg",
|
365 |
+
"target_prompt": "Golden-brown cat-shaped bread loaf with closed eyes rests on wooden table, soft kitchen blur in background",
|
366 |
+
"condition_image_prompt": "",
|
367 |
+
"output": "assets/depth_to_image_output.png",
|
368 |
+
"inpainting": False,
|
369 |
+
"fill_x1": None,
|
370 |
+
"fill_x2": None,
|
371 |
+
"fill_y1": None,
|
372 |
+
"fill_y2": None,
|
373 |
+
},
|
374 |
+
{
|
375 |
+
"task": "depth_pred",
|
376 |
+
"input": "assets/depth_prediction_input.jpg",
|
377 |
+
"target_prompt": "Steaming bowl of ramen with pork slices, soft-boiled egg, greens, and scallions in rich broth on wooden table",
|
378 |
+
"condition_image_prompt": "",
|
379 |
+
"output": "assets/depth_prediction_output.png",
|
380 |
+
"inpainting": False,
|
381 |
+
"fill_x1": None,
|
382 |
+
"fill_x2": None,
|
383 |
+
"fill_y1": None,
|
384 |
+
"fill_y2": None,
|
385 |
+
},
|
386 |
+
{
|
387 |
+
"task": "fill",
|
388 |
+
"input": "assets/inpainting_input.jpg",
|
389 |
+
"target_prompt": "Mona Lisa dons a medical mask, her enigmatic smile now concealed beneath crisp white fabric",
|
390 |
+
"condition_image_prompt": "",
|
391 |
+
"output": "assets/inpainting_output.png",
|
392 |
+
"inpainting": True,
|
393 |
+
"fill_x1": 170,
|
394 |
+
"fill_x2": 300,
|
395 |
+
"fill_y1": 190,
|
396 |
+
"fill_y2": 290,
|
397 |
+
},
|
398 |
+
{
|
399 |
+
"task": "fill",
|
400 |
+
"input": "assets/outpainting_input.jpg",
|
401 |
+
"target_prompt": "Her left hand emerges at the frame's lower right, delicately cradling a vibrant red flower against the black void",
|
402 |
+
"condition_image_prompt": "",
|
403 |
+
"output": "assets/outpainting_output.png",
|
404 |
+
"inpainting": False,
|
405 |
+
"fill_x1": 155,
|
406 |
+
"fill_x2": 512,
|
407 |
+
"fill_y1": 0,
|
408 |
+
"fill_y2": 330,
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"task": "sr",
|
412 |
+
"input": "assets/super_resolution_input.jpg",
|
413 |
+
"target_prompt": "Crispy buffalo wings and golden fries rest on a red-and-white checkered paper lining a gleaming metal tray, with creamy dip",
|
414 |
+
"condition_image_prompt": "",
|
415 |
+
"output": "assets/super_resolution_output.png",
|
416 |
+
"inpainting": False,
|
417 |
+
"fill_x1": None,
|
418 |
+
"fill_x2": None,
|
419 |
+
"fill_y1": None,
|
420 |
+
"fill_y2": None,
|
421 |
+
},
|
422 |
+
{
|
423 |
+
"task": "style_transfer",
|
424 |
+
"input": "assets/style_transfer_input.png",
|
425 |
+
"target_prompt": "bitmoji style. An orange cat sits quietly on the stone slab. Beside it are the green grasses. With its ears perked up, it looks to one side.",
|
426 |
+
"condition_image_prompt": "An orange cat sits quietly on the stone slab. Beside it are the green grasses. With its ears perked up, it looks to one side.",
|
427 |
+
"output": "assets/style_transfer_output.png",
|
428 |
+
"inpainting": False,
|
429 |
+
"fill_x1": None,
|
430 |
+
"fill_x2": None,
|
431 |
+
"fill_y1": None,
|
432 |
+
"fill_y2": None,
|
433 |
+
},
|
434 |
+
]
|
435 |
+
|
436 |
+
return [
|
437 |
+
[
|
438 |
+
sample['task'],
|
439 |
+
Image.open(sample['input']),
|
440 |
+
sample['target_prompt'],
|
441 |
+
sample['condition_image_prompt'],
|
442 |
+
Image.open(sample['output']),
|
443 |
+
sample['inpainting'],
|
444 |
+
sample['fill_x1'],
|
445 |
+
sample['fill_x2'],
|
446 |
+
sample['fill_y1'],
|
447 |
+
sample['fill_y2'],
|
448 |
+
]
|
449 |
+
for sample in sample_list
|
450 |
+
]
|
451 |
|
452 |
def create_app():
|
453 |
with gr.Blocks() as app:
|
|
|
476 |
)
|
477 |
gr.Markdown(notice, elem_id="notice")
|
478 |
target_prompt = gr.Textbox(lines=2, label="Target Prompt", elem_id="tp")
|
479 |
+
gr.Markdown("**Condition Image Prompt** _(Only required by Subject-driven Image Generation and Style Transfer tasks)_")
|
480 |
+
condition_image_prompt = gr.Textbox(lines=2, label="Condition Image Prompt", elem_id="cp")
|
481 |
random_seed = gr.Number(label="Random Seed", precision=0, value=0, elem_id="seed")
|
482 |
num_steps = gr.Number(label="Diffusion Inference Steps", precision=0, value=50, elem_id="steps")
|
483 |
inpainting = gr.Checkbox(label="Inpainting", value=False, elem_id="inpainting")
|
|
|
489 |
|
490 |
with gr.Column(variant="panel", elem_classes="outputPanel"):
|
491 |
# output_image = gr.Image(type="pil", elem_id="output")
|
492 |
+
# output_images = gr.Gallery(
|
493 |
+
# label="Output Images",
|
494 |
+
# show_label=True,
|
495 |
+
# elem_id="output_gallery",
|
496 |
+
# columns=1,
|
497 |
+
# rows=10,
|
498 |
+
# object_fit="contain",
|
499 |
+
# height="auto",
|
500 |
+
# )
|
501 |
+
output_image = gr.Image(
|
502 |
+
type="pil", label="Output Image", elem_id="output_image"
|
503 |
+
)
|
504 |
+
output_video = gr.Video(
|
505 |
+
label="Output Video", elem_id="output_video"
|
506 |
)
|
507 |
|
508 |
+
with gr.Row():
|
509 |
+
examples = gr.Examples(
|
510 |
+
examples=get_samples(),
|
511 |
+
inputs=[task, condition_image, target_prompt, condition_image_prompt, output_image, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
|
512 |
+
label="Examples",
|
513 |
+
)
|
514 |
+
|
515 |
submit_btn.click(
|
516 |
fn=process_image_and_text,
|
517 |
inputs=[condition_image, target_prompt, condition_image_prompt, task, random_seed, num_steps, inpainting, fill_x1, fill_x2, fill_y1, fill_y2],
|
518 |
+
outputs=[output_image, output_video],
|
519 |
)
|
520 |
|
521 |
return app
|
assets/README.md
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Here are some examples.
|