# Copyright 2024 The Hunyuan Team and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Modified by [Hengyuan Cao] in 2025. from typing import Any, Dict, List, Optional, Tuple, Union import torch import torch.nn as nn import torch.nn.functional as F from diffusers.loaders import FromOriginalModelMixin from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.loaders import PeftAdapterMixin from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers from diffusers.models.attention import FeedForward from diffusers.models.attention_processor import Attention, AttentionProcessor from diffusers.models.cache_utils import CacheMixin from diffusers.models.embeddings import ( CombinedTimestepTextProjEmbeddings, PixArtAlphaTextProjection, TimestepEmbedding, Timesteps, get_1d_rotary_pos_embed, ) from diffusers.models.modeling_outputs import Transformer2DModelOutput from diffusers.models.modeling_utils import ModelMixin from diffusers.models.normalization import AdaLayerNormContinuous, AdaLayerNormZero, AdaLayerNormZeroSingle, FP32LayerNorm from torch.nn.utils.rnn import pad_sequence try: from flash_attn import flash_attn_func, flash_attn_varlen_func FLASH_ATTN_AVALIABLE = True except: FLASH_ATTN_AVALIABLE = True logger = logging.get_logger(__name__) # pylint: disable=invalid-name class HunyuanVideoAttnProcessor2_0: def __init__(self, inference_subject_driven: bool = False): if not hasattr(F, "scaled_dot_product_attention"): raise ImportError( "HunyuanVideoAttnProcessor2_0 requires PyTorch 2.0. To use it, please upgrade PyTorch to 2.0." ) self.inference_subject_driven = inference_subject_driven def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, enhance_tp: bool = False, ) -> torch.Tensor: if attn.add_q_proj is None and encoder_hidden_states is not None: hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) # 1. QKV projections query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query = query.unflatten(2, (attn.heads, -1)).transpose(1, 2) key = key.unflatten(2, (attn.heads, -1)).transpose(1, 2) value = value.unflatten(2, (attn.heads, -1)).transpose(1, 2) # 2. QK normalization if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # 3. Rotational positional embeddings applied to latent stream if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb if attn.add_q_proj is None and encoder_hidden_states is not None: query = torch.cat( [ apply_rotary_emb(query[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), query[:, :, -encoder_hidden_states.shape[1] :], ], dim=2, ) key = torch.cat( [ apply_rotary_emb(key[:, :, : -encoder_hidden_states.shape[1]], image_rotary_emb), key[:, :, -encoder_hidden_states.shape[1] :], ], dim=2, ) else: query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # 4. Encoder condition QKV projection and normalization if attn.add_q_proj is not None and encoder_hidden_states is not None: encoder_query = attn.add_q_proj(encoder_hidden_states) encoder_key = attn.add_k_proj(encoder_hidden_states) encoder_value = attn.add_v_proj(encoder_hidden_states) encoder_query = encoder_query.unflatten(2, (attn.heads, -1)).transpose(1, 2) encoder_key = encoder_key.unflatten(2, (attn.heads, -1)).transpose(1, 2) encoder_value = encoder_value.unflatten(2, (attn.heads, -1)).transpose(1, 2) if attn.norm_added_q is not None: encoder_query = attn.norm_added_q(encoder_query) if attn.norm_added_k is not None: encoder_key = attn.norm_added_k(encoder_key) query = torch.cat([query, encoder_query], dim=2) key = torch.cat([key, encoder_key], dim=2) value = torch.cat([value, encoder_value], dim=2) query = query.transpose(1, 2) # batch, sequence, num_head, head_dim key = key.transpose(1, 2) value = value.transpose(1, 2) # 5. Attention if FLASH_ATTN_AVALIABLE: if attention_mask is None: hidden_states = flash_attn_func(query, key, value, dropout=0.0) else: B, S, H, D = query.size() unit_img_seq_len = 1024 unit_txt_seq_len = 144 + 252 if not (unit_img_seq_len*4+unit_txt_seq_len == S or unit_img_seq_len*4+unit_txt_seq_len*2 == S): raise ValueError("Get wrong sequence length.") if S == unit_img_seq_len*4+unit_txt_seq_len: seg_start = [0, unit_img_seq_len, unit_img_seq_len*4] seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len] k_segs = [[0], [0, 1, 2], [1, 2]] elif S == unit_img_seq_len*4+unit_txt_seq_len*2: seg_start = [0, unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len] seg_end = [unit_img_seq_len, unit_img_seq_len*4, unit_img_seq_len*4+unit_txt_seq_len, S] k_segs = [[0, 3], [0, 1, 2], [1,2], [0, 3]] valid_indices = attention_mask[:, 0, 0] q_lens = torch.tensor([u[i:j].long().sum().item() for u in valid_indices for i,j in zip(seg_start, seg_end)], dtype=torch.int32, device=valid_indices.device) k_lens = torch.tensor([sum([u[seg_start[seg]:seg_end[seg]].long().sum().item() for seg in segs]) for u in valid_indices for segs in k_segs], dtype=torch.int32, device=valid_indices.device) query = torch.cat([u[i:j][v[i:j]] for u,v in zip(query, valid_indices) for i,j in zip(seg_start, seg_end)], dim=0) if self.inference_subject_driven or enhance_tp: key = torch.cat([torch.cat([ torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][:144], u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:] + 0.6 * u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]][144:].abs().mean()], dim=0) if segs == [0, 1, 2] and seg == 2 else u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \ for u,v in zip(key, valid_indices) for segs in k_segs], dim=0) else: key = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \ for u,v in zip(key, valid_indices) for segs in k_segs], dim=0) value = torch.cat([torch.cat([u[seg_start[seg]:seg_end[seg]][v[seg_start[seg]:seg_end[seg]]] for seg in segs], dim=0) \ for u,v in zip(value, valid_indices) for segs in k_segs], dim=0) cu_seqlens_q = F.pad(q_lens.cumsum(dim=0), (1, 0)).to(torch.int32) cu_seqlens_k = F.pad(k_lens.cumsum(dim=0), (1, 0)).to(torch.int32) max_seqlen_q = torch.max(q_lens).item() max_seqlen_k = torch.max(k_lens).item() hidden_states = flash_attn_varlen_func(query, key, value, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k) num_seq_parts = len(k_segs) hidden_states = pad_sequence([ hidden_states[start: end] for start, end in zip(cu_seqlens_q[::num_seq_parts][:-1], cu_seqlens_q[::num_seq_parts][1:]) ], batch_first=True) hidden_states = F.pad( hidden_states, (0, 0, 0, 0, 0, S - hidden_states.size(1), 0, 0) ) else: query = query.permute(0, 2, 1, 3) # batch, num_head, sequence, head_dim key = key.permute(0, 2, 1, 3) value = value.permute(0, 2, 1, 3) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) # use sdpa in torch may generate black output, upgrade to >=2.5.1 may solve this hidden_states = hidden_states.transpose(1, 2) # flatten num_head * head_dim hidden_states = hidden_states.flatten(2, 3) hidden_states = hidden_states.to(query.dtype) # 6. Output projection if encoder_hidden_states is not None: hidden_states, encoder_hidden_states = ( hidden_states[:, : -encoder_hidden_states.shape[1]], hidden_states[:, -encoder_hidden_states.shape[1] :], ) if getattr(attn, "to_out", None) is not None: hidden_states = attn.to_out[0](hidden_states) hidden_states = attn.to_out[1](hidden_states) if getattr(attn, "to_add_out", None) is not None: encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states class HunyuanVideoPatchEmbed(nn.Module): def __init__( self, patch_size: Union[int, Tuple[int, int, int]] = 16, in_chans: int = 3, embed_dim: int = 768, ) -> None: super().__init__() patch_size = (patch_size, patch_size, patch_size) if isinstance(patch_size, int) else patch_size self.proj = nn.Conv3d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.proj(hidden_states) hidden_states = hidden_states.flatten(2).transpose(1, 2) # BCFHW -> BNC return hidden_states class HunyuanVideoAdaNorm(nn.Module): def __init__(self, in_features: int, out_features: Optional[int] = None) -> None: super().__init__() out_features = out_features or 2 * in_features self.linear = nn.Linear(in_features, out_features) self.nonlinearity = nn.SiLU() def forward( self, temb: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: temb = self.linear(self.nonlinearity(temb)) gate_msa, gate_mlp = temb.chunk(2, dim=1) gate_msa, gate_mlp = gate_msa.unsqueeze(1), gate_mlp.unsqueeze(1) return gate_msa, gate_mlp class HunyuanVideoTokenReplaceAdaLayerNormZero(nn.Module): def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 6 * embedding_dim, bias=bias) if norm_type == "layer_norm": self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) elif norm_type == "fp32_layer_norm": self.norm = FP32LayerNorm(embedding_dim, elementwise_affine=False, bias=False) else: raise ValueError( f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." ) def forward( self, hidden_states: torch.Tensor, emb: torch.Tensor, token_replace_emb: torch.Tensor, first_frame_num_tokens: int, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: emb = self.linear(self.silu(emb)) token_replace_emb = self.linear(self.silu(token_replace_emb)) shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=1) tr_shift_msa, tr_scale_msa, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp = token_replace_emb.chunk( 6, dim=1 ) norm_hidden_states = self.norm(hidden_states) hidden_states_zero = ( norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None] ) hidden_states_orig = ( norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None] ) hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) return ( hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp, ) class HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(nn.Module): def __init__(self, embedding_dim: int, norm_type: str = "layer_norm", bias: bool = True): super().__init__() self.silu = nn.SiLU() self.linear = nn.Linear(embedding_dim, 3 * embedding_dim, bias=bias) if norm_type == "layer_norm": self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6) else: raise ValueError( f"Unsupported `norm_type` ({norm_type}) provided. Supported ones are: 'layer_norm', 'fp32_layer_norm'." ) def forward( self, hidden_states: torch.Tensor, emb: torch.Tensor, token_replace_emb: torch.Tensor, first_frame_num_tokens: int, ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: emb = self.linear(self.silu(emb)) token_replace_emb = self.linear(self.silu(token_replace_emb)) shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=1) tr_shift_msa, tr_scale_msa, tr_gate_msa = token_replace_emb.chunk(3, dim=1) norm_hidden_states = self.norm(hidden_states) hidden_states_zero = ( norm_hidden_states[:, :first_frame_num_tokens] * (1 + tr_scale_msa[:, None]) + tr_shift_msa[:, None] ) hidden_states_orig = ( norm_hidden_states[:, first_frame_num_tokens:] * (1 + scale_msa[:, None]) + shift_msa[:, None] ) hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) return hidden_states, gate_msa, tr_gate_msa class HunyuanVideoConditionEmbedding(nn.Module): def __init__( self, embedding_dim: int, pooled_projection_dim: int, guidance_embeds: bool, image_condition_type: Optional[str] = None, ): super().__init__() self.image_condition_type = image_condition_type self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0) self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) self.text_embedder = PixArtAlphaTextProjection(pooled_projection_dim, embedding_dim, act_fn="silu") self.guidance_embedder = None if guidance_embeds: self.guidance_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim) def forward( self, timestep: torch.Tensor, pooled_projection: torch.Tensor, guidance: Optional[torch.Tensor] = None ) -> Tuple[torch.Tensor, torch.Tensor]: timesteps_proj = self.time_proj(timestep) timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=pooled_projection.dtype)) # (N, D) pooled_projections = self.text_embedder(pooled_projection) conditioning = timesteps_emb + pooled_projections token_replace_emb = None if self.image_condition_type == "token_replace": token_replace_timestep = torch.zeros_like(timestep) token_replace_proj = self.time_proj(token_replace_timestep) token_replace_emb = self.timestep_embedder(token_replace_proj.to(dtype=pooled_projection.dtype)) token_replace_emb = token_replace_emb + pooled_projections if self.guidance_embedder is not None: guidance_proj = self.time_proj(guidance) guidance_emb = self.guidance_embedder(guidance_proj.to(dtype=pooled_projection.dtype)) conditioning = conditioning + guidance_emb return conditioning, token_replace_emb class HunyuanVideoIndividualTokenRefinerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_width_ratio: str = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, heads=num_attention_heads, dim_head=attention_head_dim, bias=attention_bias, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_width_ratio, activation_fn="linear-silu", dropout=mlp_drop_rate) self.norm_out = HunyuanVideoAdaNorm(hidden_size, 2 * hidden_size) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: norm_hidden_states = self.norm1(hidden_states) attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=None, attention_mask=attention_mask, ) gate_msa, gate_mlp = self.norm_out(temb) hidden_states = hidden_states + attn_output * gate_msa ff_output = self.ff(self.norm2(hidden_states)) hidden_states = hidden_states + ff_output * gate_mlp return hidden_states class HunyuanVideoIndividualTokenRefiner(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_width_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() self.refiner_blocks = nn.ModuleList( [ HunyuanVideoIndividualTokenRefinerBlock( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, mlp_width_ratio=mlp_width_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) for _ in range(num_layers) ] ) def forward( self, hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, ) -> None: self_attn_mask = None if attention_mask is not None: batch_size = attention_mask.shape[0] seq_len = attention_mask.shape[1] attention_mask = attention_mask.to(hidden_states.device).bool() self_attn_mask_1 = attention_mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1) self_attn_mask_2 = self_attn_mask_1.transpose(2, 3) self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool() self_attn_mask[:, :, :, 0] = True for block in self.refiner_blocks: hidden_states = block(hidden_states, temb, self_attn_mask) return hidden_states class HunyuanVideoTokenRefiner(nn.Module): def __init__( self, in_channels: int, num_attention_heads: int, attention_head_dim: int, num_layers: int, mlp_ratio: float = 4.0, mlp_drop_rate: float = 0.0, attention_bias: bool = True, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.time_text_embed = CombinedTimestepTextProjEmbeddings( embedding_dim=hidden_size, pooled_projection_dim=in_channels ) self.proj_in = nn.Linear(in_channels, hidden_size, bias=True) self.token_refiner = HunyuanVideoIndividualTokenRefiner( num_attention_heads=num_attention_heads, attention_head_dim=attention_head_dim, num_layers=num_layers, mlp_width_ratio=mlp_ratio, mlp_drop_rate=mlp_drop_rate, attention_bias=attention_bias, ) def forward( self, hidden_states: torch.Tensor, timestep: torch.LongTensor, attention_mask: Optional[torch.LongTensor] = None, ) -> torch.Tensor: if attention_mask is None: pooled_projections = hidden_states.mean(dim=1) else: original_dtype = hidden_states.dtype mask_float = attention_mask.float().unsqueeze(-1) pooled_projections = (hidden_states * mask_float).sum(dim=1) / mask_float.sum(dim=1) pooled_projections = pooled_projections.to(original_dtype) temb = self.time_text_embed(timestep, pooled_projections) hidden_states = self.proj_in(hidden_states) hidden_states = self.token_refiner(hidden_states, temb, attention_mask) return hidden_states class HunyuanVideoRotaryPosEmbed(nn.Module): def __init__(self, patch_size: int, patch_size_t: int, rope_dim: List[int], theta: float = 256.0) -> None: super().__init__() self.patch_size = patch_size self.patch_size_t = patch_size_t self.rope_dim = rope_dim self.theta = theta def forward(self, hidden_states: torch.Tensor, frame_gap: Union[int, None] = None) -> torch.Tensor: batch_size, num_channels, num_frames, height, width = hidden_states.shape rope_sizes = [num_frames // self.patch_size_t, height // self.patch_size, width // self.patch_size] axes_grids = [] for i in range(3): # Note: The following line diverges from original behaviour. We create the grid on the device, whereas # original implementation creates it on CPU and then moves it to device. This results in numerical # differences in layerwise debugging outputs, but visually it is the same. grid = torch.arange(0, rope_sizes[i], device=hidden_states.device, dtype=torch.float32) if frame_gap is not None and i == 0: grid = grid * frame_gap axes_grids.append(grid) grid = torch.meshgrid(*axes_grids, indexing="ij") # [W, H, T] grid = torch.stack(grid, dim=0) # [3, W, H, T] freqs = [] for i in range(3): freq = get_1d_rotary_pos_embed(self.rope_dim[i], grid[i].reshape(-1), self.theta, use_real=True) freqs.append(freq) freqs_cos = torch.cat([f[0] for f in freqs], dim=1) # (W * H * T, D / 2) freqs_sin = torch.cat([f[1] for f in freqs], dim=1) # (W * H * T, D / 2) return freqs_cos, freqs_sin class HunyuanVideoSingleTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0, qk_norm: str = "rms_norm", inference_subject_driven: bool = False, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim mlp_dim = int(hidden_size * mlp_ratio) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, bias=True, processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), qk_norm=qk_norm, eps=1e-6, pre_only=True, ) self.norm = AdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") self.proj_mlp = nn.Linear(hidden_size, mlp_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, *args, **kwargs, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.shape[1] hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) residual = hidden_states # 1. Input normalization norm_hidden_states, gate = self.norm(hidden_states, emb=temb) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) norm_hidden_states, norm_encoder_hidden_states = ( norm_hidden_states[:, :-text_seq_length, :], norm_hidden_states[:, -text_seq_length:, :], ) # 2. Attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) attn_output = torch.cat([attn_output, context_attn_output], dim=1) # 3. Modulation and residual connection hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) hidden_states = gate.unsqueeze(1) * self.proj_out(hidden_states) hidden_states = hidden_states + residual hidden_states, encoder_hidden_states = ( hidden_states[:, :-text_seq_length, :], hidden_states[:, -text_seq_length:, :], ) return hidden_states, encoder_hidden_states class HunyuanVideoTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float, qk_norm: str = "rms_norm", inference_subject_driven: bool = False, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, added_kv_proj_dim=hidden_size, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, context_pre_only=False, bias=True, processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), qk_norm=qk_norm, eps=1e-6, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, *args, **kwargs, ) -> Tuple[torch.Tensor, torch.Tensor]: # 1. Input normalization norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(hidden_states, emb=temb) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # 2. Joint attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=freqs_cis, ) # 3. Modulation and residual connection hidden_states = hidden_states + attn_output * gate_msa.unsqueeze(1) encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) norm_hidden_states = self.norm2(hidden_states) norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] # 4. Feed-forward ff_output = self.ff(norm_hidden_states) context_ff_output = self.ff_context(norm_encoder_hidden_states) hidden_states = hidden_states + gate_mlp.unsqueeze(1) * ff_output encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return hidden_states, encoder_hidden_states class HunyuanVideoTokenReplaceSingleTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float = 4.0, qk_norm: str = "rms_norm", inference_subject_driven: bool = False, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim mlp_dim = int(hidden_size * mlp_ratio) self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, bias=True, processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), qk_norm=qk_norm, eps=1e-6, pre_only=True, ) self.norm = HunyuanVideoTokenReplaceAdaLayerNormZeroSingle(hidden_size, norm_type="layer_norm") self.proj_mlp = nn.Linear(hidden_size, mlp_dim) self.act_mlp = nn.GELU(approximate="tanh") self.proj_out = nn.Linear(hidden_size + mlp_dim, hidden_size) def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, token_replace_emb: torch.Tensor = None, num_tokens: int = None, enhance_tp: bool = False, ) -> torch.Tensor: text_seq_length = encoder_hidden_states.shape[1] hidden_states = torch.cat([hidden_states, encoder_hidden_states], dim=1) residual = hidden_states # 1. Input normalization norm_hidden_states, gate, tr_gate = self.norm(hidden_states, temb, token_replace_emb, num_tokens) mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) norm_hidden_states, norm_encoder_hidden_states = ( norm_hidden_states[:, :-text_seq_length, :], norm_hidden_states[:, -text_seq_length:, :], ) # 2. Attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, enhance_tp=enhance_tp, ) attn_output = torch.cat([attn_output, context_attn_output], dim=1) # 3. Modulation and residual connection hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) proj_output = self.proj_out(hidden_states) hidden_states_zero = proj_output[:, :num_tokens] * tr_gate.unsqueeze(1) hidden_states_orig = proj_output[:, num_tokens:] * gate.unsqueeze(1) hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) hidden_states = hidden_states + residual hidden_states, encoder_hidden_states = ( hidden_states[:, :-text_seq_length, :], hidden_states[:, -text_seq_length:, :], ) return hidden_states, encoder_hidden_states class HunyuanVideoTokenReplaceTransformerBlock(nn.Module): def __init__( self, num_attention_heads: int, attention_head_dim: int, mlp_ratio: float, qk_norm: str = "rms_norm", inference_subject_driven: bool = False, ) -> None: super().__init__() hidden_size = num_attention_heads * attention_head_dim self.norm1 = HunyuanVideoTokenReplaceAdaLayerNormZero(hidden_size, norm_type="layer_norm") self.norm1_context = AdaLayerNormZero(hidden_size, norm_type="layer_norm") self.attn = Attention( query_dim=hidden_size, cross_attention_dim=None, added_kv_proj_dim=hidden_size, dim_head=attention_head_dim, heads=num_attention_heads, out_dim=hidden_size, context_pre_only=False, bias=True, processor=HunyuanVideoAttnProcessor2_0(inference_subject_driven=inference_subject_driven), qk_norm=qk_norm, eps=1e-6, ) self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") self.norm2_context = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.ff_context = FeedForward(hidden_size, mult=mlp_ratio, activation_fn="gelu-approximate") def forward( self, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, temb: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, freqs_cis: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, token_replace_emb: torch.Tensor = None, num_tokens: int = None, enhance_tp: bool = False, ) -> Tuple[torch.Tensor, torch.Tensor]: # 1. Input normalization ( norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp, tr_gate_msa, tr_shift_mlp, tr_scale_mlp, tr_gate_mlp, ) = self.norm1(hidden_states, temb, token_replace_emb, num_tokens) norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.norm1_context( encoder_hidden_states, emb=temb ) # 2. Joint attention attn_output, context_attn_output = self.attn( hidden_states=norm_hidden_states, encoder_hidden_states=norm_encoder_hidden_states, attention_mask=attention_mask, image_rotary_emb=freqs_cis, enhance_tp=enhance_tp, ) # 3. Modulation and residual connection hidden_states_zero = hidden_states[:, :num_tokens] + attn_output[:, :num_tokens] * tr_gate_msa.unsqueeze(1) hidden_states_orig = hidden_states[:, num_tokens:] + attn_output[:, num_tokens:] * gate_msa.unsqueeze(1) hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) encoder_hidden_states = encoder_hidden_states + context_attn_output * c_gate_msa.unsqueeze(1) norm_hidden_states = self.norm2(hidden_states) norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) hidden_states_zero = norm_hidden_states[:, :num_tokens] * (1 + tr_scale_mlp[:, None]) + tr_shift_mlp[:, None] hidden_states_orig = norm_hidden_states[:, num_tokens:] * (1 + scale_mlp[:, None]) + shift_mlp[:, None] norm_hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) norm_encoder_hidden_states = norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] # 4. Feed-forward ff_output = self.ff(norm_hidden_states) context_ff_output = self.ff_context(norm_encoder_hidden_states) hidden_states_zero = hidden_states[:, :num_tokens] + ff_output[:, :num_tokens] * tr_gate_mlp.unsqueeze(1) hidden_states_orig = hidden_states[:, num_tokens:] + ff_output[:, num_tokens:] * gate_mlp.unsqueeze(1) hidden_states = torch.cat([hidden_states_zero, hidden_states_orig], dim=1) encoder_hidden_states = encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output return hidden_states, encoder_hidden_states class HunyuanVideoTransformer3DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin): r""" A Transformer model for video-like data used in [HunyuanVideo](https://huggingface.co/tencent/HunyuanVideo). Args: in_channels (`int`, defaults to `16`): The number of channels in the input. out_channels (`int`, defaults to `16`): The number of channels in the output. num_attention_heads (`int`, defaults to `24`): The number of heads to use for multi-head attention. attention_head_dim (`int`, defaults to `128`): The number of channels in each head. num_layers (`int`, defaults to `20`): The number of layers of dual-stream blocks to use. num_single_layers (`int`, defaults to `40`): The number of layers of single-stream blocks to use. num_refiner_layers (`int`, defaults to `2`): The number of layers of refiner blocks to use. mlp_ratio (`float`, defaults to `4.0`): The ratio of the hidden layer size to the input size in the feedforward network. patch_size (`int`, defaults to `2`): The size of the spatial patches to use in the patch embedding layer. patch_size_t (`int`, defaults to `1`): The size of the tmeporal patches to use in the patch embedding layer. qk_norm (`str`, defaults to `rms_norm`): The normalization to use for the query and key projections in the attention layers. guidance_embeds (`bool`, defaults to `True`): Whether to use guidance embeddings in the model. text_embed_dim (`int`, defaults to `4096`): Input dimension of text embeddings from the text encoder. pooled_projection_dim (`int`, defaults to `768`): The dimension of the pooled projection of the text embeddings. rope_theta (`float`, defaults to `256.0`): The value of theta to use in the RoPE layer. rope_axes_dim (`Tuple[int]`, defaults to `(16, 56, 56)`): The dimensions of the axes to use in the RoPE layer. image_condition_type (`str`, *optional*, defaults to `None`): The type of image conditioning to use. If `None`, no image conditioning is used. If `latent_concat`, the image is concatenated to the latent stream. If `token_replace`, the image is used to replace first-frame tokens in the latent stream and apply conditioning. """ _supports_gradient_checkpointing = True _skip_layerwise_casting_patterns = ["x_embedder", "context_embedder", "norm"] _no_split_modules = [ "HunyuanVideoTransformerBlock", "HunyuanVideoSingleTransformerBlock", "HunyuanVideoPatchEmbed", "HunyuanVideoTokenRefiner", ] @register_to_config def __init__( self, in_channels: int = 16, out_channels: int = 16, num_attention_heads: int = 24, attention_head_dim: int = 128, num_layers: int = 20, num_single_layers: int = 40, num_refiner_layers: int = 2, mlp_ratio: float = 4.0, patch_size: int = 2, patch_size_t: int = 1, qk_norm: str = "rms_norm", guidance_embeds: bool = True, text_embed_dim: int = 4096, pooled_projection_dim: int = 768, rope_theta: float = 256.0, rope_axes_dim: Tuple[int] = (16, 56, 56), image_condition_type: Optional[str] = None, inference_subject_driven: bool = False, ) -> None: super().__init__() supported_image_condition_types = ["latent_concat", "token_replace"] if image_condition_type is not None and image_condition_type not in supported_image_condition_types: raise ValueError( f"Invalid `image_condition_type` ({image_condition_type}). Supported ones are: {supported_image_condition_types}" ) inner_dim = num_attention_heads * attention_head_dim out_channels = out_channels or in_channels # 1. Latent and condition embedders self.x_embedder = HunyuanVideoPatchEmbed((patch_size_t, patch_size, patch_size), in_channels, inner_dim) self.context_embedder = HunyuanVideoTokenRefiner( text_embed_dim, num_attention_heads, attention_head_dim, num_layers=num_refiner_layers ) self.time_text_embed = HunyuanVideoConditionEmbedding( inner_dim, pooled_projection_dim, guidance_embeds, image_condition_type ) # 2. RoPE self.rope = HunyuanVideoRotaryPosEmbed(patch_size, patch_size_t, rope_axes_dim, rope_theta) # 3. Dual stream transformer blocks if image_condition_type == "token_replace": self.transformer_blocks = nn.ModuleList( [ HunyuanVideoTokenReplaceTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven ) for _ in range(num_layers) ] ) else: self.transformer_blocks = nn.ModuleList( [ HunyuanVideoTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven ) for _ in range(num_layers) ] ) # 4. Single stream transformer blocks if image_condition_type == "token_replace": self.single_transformer_blocks = nn.ModuleList( [ HunyuanVideoTokenReplaceSingleTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven ) for _ in range(num_single_layers) ] ) else: self.single_transformer_blocks = nn.ModuleList( [ HunyuanVideoSingleTransformerBlock( num_attention_heads, attention_head_dim, mlp_ratio=mlp_ratio, qk_norm=qk_norm, inference_subject_driven=inference_subject_driven ) for _ in range(num_single_layers) ] ) # 5. Output projection self.norm_out = AdaLayerNormContinuous(inner_dim, inner_dim, elementwise_affine=False, eps=1e-6) self.proj_out = nn.Linear(inner_dim, patch_size_t * patch_size * patch_size * out_channels) self.gradient_checkpointing = False @property # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors def attn_processors(self) -> Dict[str, AttentionProcessor]: r""" Returns: `dict` of attention processors: A dictionary containing all attention processors used in the model with indexed by its weight name. """ # set recursively processors = {} def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): if hasattr(module, "get_processor"): processors[f"{name}.processor"] = module.get_processor() for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) return processors for name, module in self.named_children(): fn_recursive_add_processors(name, module, processors) return processors # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]): r""" Sets the attention processor to use to compute attention. Parameters: processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): The instantiated processor class or a dictionary of processor classes that will be set as the processor for **all** `Attention` layers. If `processor` is a dict, the key needs to define the path to the corresponding cross attention processor. This is strongly recommended when setting trainable attention processors. """ count = len(self.attn_processors.keys()) if isinstance(processor, dict) and len(processor) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes." ) def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): if hasattr(module, "set_processor"): if not isinstance(processor, dict): module.set_processor(processor) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) for name, module in self.named_children(): fn_recursive_attn_processor(name, module, processor) def forward( self, hidden_states: torch.Tensor, timestep: torch.LongTensor, encoder_hidden_states: torch.Tensor, encoder_attention_mask: torch.Tensor, pooled_projections: torch.Tensor, encoder_hidden_states_condition: Union[torch.Tensor, None] = None, encoder_attention_mask_condition: Union[torch.Tensor, None] = None, guidance: torch.Tensor = None, attention_kwargs: Optional[Dict[str, Any]] = None, return_dict: bool = True, frame_gap: Union[int, None] = None, enhance_tp: bool = False, ) -> Union[torch.Tensor, Dict[str, torch.Tensor]]: if attention_kwargs is not None: attention_kwargs = attention_kwargs.copy() lora_scale = attention_kwargs.pop("scale", 1.0) else: lora_scale = 1.0 if USE_PEFT_BACKEND: # weight the lora layers by setting `lora_scale` for each PEFT layer scale_lora_layers(self, lora_scale) else: if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None: logger.warning( "Passing `scale` via `attention_kwargs` when not using the PEFT backend is ineffective." ) batch_size, num_channels, num_frames, height, width = hidden_states.shape p, p_t = self.config.patch_size, self.config.patch_size_t post_patch_num_frames = num_frames // p_t post_patch_height = height // p post_patch_width = width // p first_frame_num_tokens = 1 * post_patch_height * post_patch_width # 1. RoPE image_rotary_emb = self.rope(hidden_states, frame_gap=frame_gap) # 2. Conditional embeddings temb, token_replace_emb = self.time_text_embed(timestep, pooled_projections, guidance) hidden_states = self.x_embedder(hidden_states) encoder_hidden_states = self.context_embedder(encoder_hidden_states, timestep, encoder_attention_mask) if encoder_hidden_states_condition is not None and encoder_attention_mask_condition is not None: encoder_hidden_states_condition = self.context_embedder( encoder_hidden_states_condition, torch.zeros_like(timestep), encoder_attention_mask_condition, ) encoder_hidden_states = torch.cat([encoder_hidden_states, encoder_hidden_states_condition], dim=1) encoder_attention_mask = torch.cat([encoder_attention_mask, encoder_attention_mask_condition], dim=1) # 3. Attention mask preparation latent_sequence_length = hidden_states.shape[1] condition_sequence_length = encoder_hidden_states.shape[1] sequence_length = latent_sequence_length + condition_sequence_length attention_mask = torch.zeros( batch_size, sequence_length, device=hidden_states.device, dtype=torch.bool ) # [B, N] effective_condition_sequence_length = encoder_attention_mask.sum(dim=1, dtype=torch.int) # [B,] effective_sequence_length = latent_sequence_length + effective_condition_sequence_length for i in range(batch_size): if encoder_attention_mask_condition is not None and encoder_attention_mask_condition is not None: attention_mask[i, : latent_sequence_length] = True attention_mask[i, latent_sequence_length :][encoder_attention_mask[i] == 1.] = True else: attention_mask[i, : effective_sequence_length[i]] = True # [B, 1, 1, N], for broadcasting across attention heads attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) # 4. Transformer blocks if torch.is_grad_enabled() and self.gradient_checkpointing: for block in self.transformer_blocks: hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( block, hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, token_replace_emb, first_frame_num_tokens, enhance_tp, ) for block in self.single_transformer_blocks: hidden_states, encoder_hidden_states = self._gradient_checkpointing_func( block, hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, token_replace_emb, first_frame_num_tokens, enhance_tp, ) else: for block in self.transformer_blocks: hidden_states, encoder_hidden_states = block( hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, token_replace_emb, first_frame_num_tokens, enhance_tp, ) for block in self.single_transformer_blocks: hidden_states, encoder_hidden_states = block( hidden_states, encoder_hidden_states, temb, attention_mask, image_rotary_emb, token_replace_emb, first_frame_num_tokens, enhance_tp, ) # 5. Output projection hidden_states = self.norm_out(hidden_states, temb) hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape( batch_size, post_patch_num_frames, post_patch_height, post_patch_width, -1, p_t, p, p ) hidden_states = hidden_states.permute(0, 4, 1, 5, 2, 6, 3, 7) hidden_states = hidden_states.flatten(6, 7).flatten(4, 5).flatten(2, 3) if USE_PEFT_BACKEND: # remove `lora_scale` from each PEFT layer unscale_lora_layers(self, lora_scale) if not return_dict: return (hidden_states,) return Transformer2DModelOutput(sample=hidden_states)