File size: 6,699 Bytes
3b96cb1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.transforms import RandomChoice, RandomChoiceResize
from mmcv.transforms.loading import LoadImageFromFile
from mmengine.config import read_base
from mmengine.model.weight_init import PretrainedInit
from mmengine.optim.optimizer.optimizer_wrapper import OptimWrapper
from mmengine.optim.scheduler.lr_scheduler import MultiStepLR
from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop
from torch.nn.modules.activation import ReLU
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.optim.adamw import AdamW

from mmdet.datasets.transforms import (LoadAnnotations, PackDetInputs,
                                       RandomCrop, RandomFlip, Resize)
from mmdet.models import (DETR, ChannelMapper, DetDataPreprocessor, DETRHead,
                          ResNet)
from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
from mmdet.models.losses.iou_loss import GIoULoss
from mmdet.models.losses.smooth_l1_loss import L1Loss
from mmdet.models.task_modules import (BBoxL1Cost, ClassificationCost,
                                       HungarianAssigner, IoUCost)

with read_base():
    from .._base_.datasets.coco_detection import *
    from .._base_.default_runtime import *

model = dict(
    type=DETR,
    num_queries=100,
    data_preprocessor=dict(
        type=DetDataPreprocessor,
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        bgr_to_rgb=True,
        pad_size_divisor=1),
    backbone=dict(
        type=ResNet,
        depth=50,
        num_stages=4,
        out_indices=(3, ),
        frozen_stages=1,
        norm_cfg=dict(type=BatchNorm2d, requires_grad=False),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(
            type=PretrainedInit, checkpoint='torchvision://resnet50')),
    neck=dict(
        type=ChannelMapper,
        in_channels=[2048],
        kernel_size=1,
        out_channels=256,
        act_cfg=None,
        norm_cfg=None,
        num_outs=1),
    encoder=dict(  # DetrTransformerEncoder
        num_layers=6,
        layer_cfg=dict(  # DetrTransformerEncoderLayer
            self_attn_cfg=dict(  # MultiheadAttention
                embed_dims=256,
                num_heads=8,
                dropout=0.1,
                batch_first=True),
            ffn_cfg=dict(
                embed_dims=256,
                feedforward_channels=2048,
                num_fcs=2,
                ffn_drop=0.1,
                act_cfg=dict(type=ReLU, inplace=True)))),
    decoder=dict(  # DetrTransformerDecoder
        num_layers=6,
        layer_cfg=dict(  # DetrTransformerDecoderLayer
            self_attn_cfg=dict(  # MultiheadAttention
                embed_dims=256,
                num_heads=8,
                dropout=0.1,
                batch_first=True),
            cross_attn_cfg=dict(  # MultiheadAttention
                embed_dims=256,
                num_heads=8,
                dropout=0.1,
                batch_first=True),
            ffn_cfg=dict(
                embed_dims=256,
                feedforward_channels=2048,
                num_fcs=2,
                ffn_drop=0.1,
                act_cfg=dict(type=ReLU, inplace=True))),
        return_intermediate=True),
    positional_encoding=dict(num_feats=128, normalize=True),
    bbox_head=dict(
        type=DETRHead,
        num_classes=80,
        embed_dims=256,
        loss_cls=dict(
            type=CrossEntropyLoss,
            bg_cls_weight=0.1,
            use_sigmoid=False,
            loss_weight=1.0,
            class_weight=1.0),
        loss_bbox=dict(type=L1Loss, loss_weight=5.0),
        loss_iou=dict(type=GIoULoss, loss_weight=2.0)),
    # training and testing settings
    train_cfg=dict(
        assigner=dict(
            type=HungarianAssigner,
            match_costs=[
                dict(type=ClassificationCost, weight=1.),
                dict(type=BBoxL1Cost, weight=5.0, box_format='xywh'),
                dict(type=IoUCost, iou_mode='giou', weight=2.0)
            ])),
    test_cfg=dict(max_per_img=100))

# train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
# from the default setting in mmdet.
train_pipeline = [
    dict(type=LoadImageFromFile, backend_args=backend_args),
    dict(type=LoadAnnotations, with_bbox=True),
    dict(type=RandomFlip, prob=0.5),
    dict(
        type=RandomChoice,
        transforms=[[
            dict(
                type=RandomChoiceResize,
                resize_type=Resize,
                scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
                        (608, 1333), (640, 1333), (672, 1333), (704, 1333),
                        (736, 1333), (768, 1333), (800, 1333)],
                keep_ratio=True)
        ],
                    [
                        dict(
                            type=RandomChoiceResize,
                            resize_type=Resize,
                            scales=[(400, 1333), (500, 1333), (600, 1333)],
                            keep_ratio=True),
                        dict(
                            type=RandomCrop,
                            crop_type='absolute_range',
                            crop_size=(384, 600),
                            allow_negative_crop=True),
                        dict(
                            type=RandomChoiceResize,
                            resize_type=Resize,
                            scales=[(480, 1333), (512, 1333), (544, 1333),
                                    (576, 1333), (608, 1333), (640, 1333),
                                    (672, 1333), (704, 1333), (736, 1333),
                                    (768, 1333), (800, 1333)],
                            keep_ratio=True)
                    ]]),
    dict(type=PackDetInputs)
]
train_dataloader.update(dataset=dict(pipeline=train_pipeline))

# optimizer
optim_wrapper = dict(
    type=OptimWrapper,
    optimizer=dict(type=AdamW, lr=0.0001, weight_decay=0.0001),
    clip_grad=dict(max_norm=0.1, norm_type=2),
    paramwise_cfg=dict(
        custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}))

# learning policy
max_epochs = 150
train_cfg = dict(
    type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=1)
val_cfg = dict(type=ValLoop)
test_cfg = dict(type=TestLoop)

param_scheduler = [
    dict(
        type=MultiStepLR,
        begin=0,
        end=max_epochs,
        by_epoch=True,
        milestones=[100],
        gamma=0.1)
]

# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (2 samples per GPU)
auto_scale_lr = dict(base_batch_size=16)