Spaces:
Runtime error
Runtime error
File size: 6,699 Bytes
3b96cb1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
# Copyright (c) OpenMMLab. All rights reserved.
from mmcv.transforms import RandomChoice, RandomChoiceResize
from mmcv.transforms.loading import LoadImageFromFile
from mmengine.config import read_base
from mmengine.model.weight_init import PretrainedInit
from mmengine.optim.optimizer.optimizer_wrapper import OptimWrapper
from mmengine.optim.scheduler.lr_scheduler import MultiStepLR
from mmengine.runner.loops import EpochBasedTrainLoop, TestLoop, ValLoop
from torch.nn.modules.activation import ReLU
from torch.nn.modules.batchnorm import BatchNorm2d
from torch.optim.adamw import AdamW
from mmdet.datasets.transforms import (LoadAnnotations, PackDetInputs,
RandomCrop, RandomFlip, Resize)
from mmdet.models import (DETR, ChannelMapper, DetDataPreprocessor, DETRHead,
ResNet)
from mmdet.models.losses.cross_entropy_loss import CrossEntropyLoss
from mmdet.models.losses.iou_loss import GIoULoss
from mmdet.models.losses.smooth_l1_loss import L1Loss
from mmdet.models.task_modules import (BBoxL1Cost, ClassificationCost,
HungarianAssigner, IoUCost)
with read_base():
from .._base_.datasets.coco_detection import *
from .._base_.default_runtime import *
model = dict(
type=DETR,
num_queries=100,
data_preprocessor=dict(
type=DetDataPreprocessor,
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=1),
backbone=dict(
type=ResNet,
depth=50,
num_stages=4,
out_indices=(3, ),
frozen_stages=1,
norm_cfg=dict(type=BatchNorm2d, requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(
type=PretrainedInit, checkpoint='torchvision://resnet50')),
neck=dict(
type=ChannelMapper,
in_channels=[2048],
kernel_size=1,
out_channels=256,
act_cfg=None,
norm_cfg=None,
num_outs=1),
encoder=dict( # DetrTransformerEncoder
num_layers=6,
layer_cfg=dict( # DetrTransformerEncoderLayer
self_attn_cfg=dict( # MultiheadAttention
embed_dims=256,
num_heads=8,
dropout=0.1,
batch_first=True),
ffn_cfg=dict(
embed_dims=256,
feedforward_channels=2048,
num_fcs=2,
ffn_drop=0.1,
act_cfg=dict(type=ReLU, inplace=True)))),
decoder=dict( # DetrTransformerDecoder
num_layers=6,
layer_cfg=dict( # DetrTransformerDecoderLayer
self_attn_cfg=dict( # MultiheadAttention
embed_dims=256,
num_heads=8,
dropout=0.1,
batch_first=True),
cross_attn_cfg=dict( # MultiheadAttention
embed_dims=256,
num_heads=8,
dropout=0.1,
batch_first=True),
ffn_cfg=dict(
embed_dims=256,
feedforward_channels=2048,
num_fcs=2,
ffn_drop=0.1,
act_cfg=dict(type=ReLU, inplace=True))),
return_intermediate=True),
positional_encoding=dict(num_feats=128, normalize=True),
bbox_head=dict(
type=DETRHead,
num_classes=80,
embed_dims=256,
loss_cls=dict(
type=CrossEntropyLoss,
bg_cls_weight=0.1,
use_sigmoid=False,
loss_weight=1.0,
class_weight=1.0),
loss_bbox=dict(type=L1Loss, loss_weight=5.0),
loss_iou=dict(type=GIoULoss, loss_weight=2.0)),
# training and testing settings
train_cfg=dict(
assigner=dict(
type=HungarianAssigner,
match_costs=[
dict(type=ClassificationCost, weight=1.),
dict(type=BBoxL1Cost, weight=5.0, box_format='xywh'),
dict(type=IoUCost, iou_mode='giou', weight=2.0)
])),
test_cfg=dict(max_per_img=100))
# train_pipeline, NOTE the img_scale and the Pad's size_divisor is different
# from the default setting in mmdet.
train_pipeline = [
dict(type=LoadImageFromFile, backend_args=backend_args),
dict(type=LoadAnnotations, with_bbox=True),
dict(type=RandomFlip, prob=0.5),
dict(
type=RandomChoice,
transforms=[[
dict(
type=RandomChoiceResize,
resize_type=Resize,
scales=[(480, 1333), (512, 1333), (544, 1333), (576, 1333),
(608, 1333), (640, 1333), (672, 1333), (704, 1333),
(736, 1333), (768, 1333), (800, 1333)],
keep_ratio=True)
],
[
dict(
type=RandomChoiceResize,
resize_type=Resize,
scales=[(400, 1333), (500, 1333), (600, 1333)],
keep_ratio=True),
dict(
type=RandomCrop,
crop_type='absolute_range',
crop_size=(384, 600),
allow_negative_crop=True),
dict(
type=RandomChoiceResize,
resize_type=Resize,
scales=[(480, 1333), (512, 1333), (544, 1333),
(576, 1333), (608, 1333), (640, 1333),
(672, 1333), (704, 1333), (736, 1333),
(768, 1333), (800, 1333)],
keep_ratio=True)
]]),
dict(type=PackDetInputs)
]
train_dataloader.update(dataset=dict(pipeline=train_pipeline))
# optimizer
optim_wrapper = dict(
type=OptimWrapper,
optimizer=dict(type=AdamW, lr=0.0001, weight_decay=0.0001),
clip_grad=dict(max_norm=0.1, norm_type=2),
paramwise_cfg=dict(
custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}))
# learning policy
max_epochs = 150
train_cfg = dict(
type=EpochBasedTrainLoop, max_epochs=max_epochs, val_interval=1)
val_cfg = dict(type=ValLoop)
test_cfg = dict(type=TestLoop)
param_scheduler = [
dict(
type=MultiStepLR,
begin=0,
end=max_epochs,
by_epoch=True,
milestones=[100],
gamma=0.1)
]
# NOTE: `auto_scale_lr` is for automatically scaling LR,
# USER SHOULD NOT CHANGE ITS VALUES.
# base_batch_size = (8 GPUs) x (2 samples per GPU)
auto_scale_lr = dict(base_batch_size=16)
|