Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
from peft import PeftModel
|
4 |
+
import torch
|
5 |
+
|
6 |
+
app = FastAPI()
|
7 |
+
|
8 |
+
# Load model once at startup
|
9 |
+
@app.on_event("startup")
|
10 |
+
async def load_model():
|
11 |
+
try:
|
12 |
+
# Configuration
|
13 |
+
model_name = "unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit"
|
14 |
+
adapter_name = "LAWSA07/medical_fine_tuned_deepseekR1"
|
15 |
+
|
16 |
+
# Load base model with 4-bit quantization
|
17 |
+
app.state.base_model = AutoModelForCausalLM.from_pretrained(
|
18 |
+
model_name,
|
19 |
+
load_in_4bit=True,
|
20 |
+
torch_dtype=torch.float16,
|
21 |
+
device_map="auto",
|
22 |
+
trust_remote_code=True,
|
23 |
+
)
|
24 |
+
|
25 |
+
# Attach PEFT adapter
|
26 |
+
app.state.model = PeftModel.from_pretrained(
|
27 |
+
app.state.base_model,
|
28 |
+
adapter_name,
|
29 |
+
adapter_weight_name="adapter_model.safetensors"
|
30 |
+
)
|
31 |
+
|
32 |
+
# Load tokenizer
|
33 |
+
app.state.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
34 |
+
|
35 |
+
except Exception as e:
|
36 |
+
raise HTTPException(
|
37 |
+
status_code=500,
|
38 |
+
detail=f"Model loading failed: {str(e)}"
|
39 |
+
)
|
40 |
+
|
41 |
+
@app.get("/")
|
42 |
+
def health_check():
|
43 |
+
return {"status": "OK"}
|
44 |
+
|
45 |
+
@app.post("/generate")
|
46 |
+
async def generate_text(prompt: str, max_length: int = 200):
|
47 |
+
try:
|
48 |
+
inputs = app.state.tokenizer(
|
49 |
+
prompt,
|
50 |
+
return_tensors="pt",
|
51 |
+
padding=True
|
52 |
+
).to("cuda")
|
53 |
+
|
54 |
+
outputs = app.state.model.generate(
|
55 |
+
**inputs,
|
56 |
+
max_length=max_length,
|
57 |
+
temperature=0.7,
|
58 |
+
do_sample=True
|
59 |
+
)
|
60 |
+
|
61 |
+
decoded = app.state.tokenizer.decode(
|
62 |
+
outputs[0],
|
63 |
+
skip_special_tokens=True
|
64 |
+
)
|
65 |
+
|
66 |
+
return {"response": decoded}
|
67 |
+
|
68 |
+
except Exception as e:
|
69 |
+
raise HTTPException(
|
70 |
+
status_code=500,
|
71 |
+
detail=f"Generation failed: {str(e)}"
|
72 |
+
)
|