Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
|
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
from PIL import Image
|
6 |
import torch
|
|
|
7 |
|
8 |
# Load the model and processor
|
9 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
@@ -13,23 +14,21 @@ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
13 |
)
|
14 |
processor = AutoProcessor.from_pretrained("daniel3303/QwenStoryteller")
|
15 |
|
16 |
-
def upload_file(files):
|
17 |
-
file_paths = [file.name for file in files]
|
18 |
-
return file_paths
|
19 |
-
|
20 |
@spaces.GPU()
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
image_content = []
|
23 |
-
for img in images[:6]:
|
24 |
image_content.append({
|
25 |
"type": "image",
|
26 |
"image": img,
|
27 |
})
|
28 |
|
29 |
-
# Add text prompt at the end
|
30 |
image_content.append({"type": "text", "text": "Generate a story based on these images."})
|
31 |
|
32 |
-
# Create messages with system prompt
|
33 |
messages = [
|
34 |
{
|
35 |
"role": "system",
|
@@ -41,7 +40,6 @@ def generate_story(images):
|
|
41 |
}
|
42 |
]
|
43 |
|
44 |
-
# Preparation for inference
|
45 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
46 |
image_inputs, video_inputs = process_vision_info(messages)
|
47 |
inputs = processor(
|
@@ -53,7 +51,6 @@ def generate_story(images):
|
|
53 |
)
|
54 |
inputs = inputs.to(model.device)
|
55 |
|
56 |
-
# Inference: Generate the output
|
57 |
generated_ids = model.generate(
|
58 |
**inputs,
|
59 |
max_new_tokens=4096,
|
@@ -61,6 +58,7 @@ def generate_story(images):
|
|
61 |
temperature=0.7,
|
62 |
top_p=0.9
|
63 |
)
|
|
|
64 |
generated_ids_trimmed = [
|
65 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
66 |
]
|
@@ -74,18 +72,19 @@ def generate_story(images):
|
|
74 |
|
75 |
with gr.Blocks() as demo:
|
76 |
gr.Markdown("# Qwen Storyteller \n## Upload up to 6 images to generate a creative story.")
|
|
|
77 |
with gr.Row():
|
78 |
with gr.Column():
|
79 |
-
|
80 |
-
|
81 |
-
gen_button = gr.Button("Generate", variant="secondary")
|
82 |
|
83 |
with gr.Column():
|
84 |
-
outputs=gr.Textbox(label="Generated Story", lines=10)
|
85 |
|
86 |
-
upload_button.upload(
|
87 |
-
|
88 |
-
|
|
|
89 |
|
90 |
if __name__ == "__main__":
|
91 |
demo.launch()
|
|
|
4 |
from qwen_vl_utils import process_vision_info
|
5 |
from PIL import Image
|
6 |
import torch
|
7 |
+
import os
|
8 |
|
9 |
# Load the model and processor
|
10 |
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
|
|
14 |
)
|
15 |
processor = AutoProcessor.from_pretrained("daniel3303/QwenStoryteller")
|
16 |
|
|
|
|
|
|
|
|
|
17 |
@spaces.GPU()
|
18 |
+
@torch.no_grad()
|
19 |
+
def generate_story(file_paths):
|
20 |
+
# Load images from the file paths
|
21 |
+
images = [Image.open(file_path) for file_path in file_paths]
|
22 |
+
|
23 |
image_content = []
|
24 |
+
for img in images[:6]: # Limit to 6 images
|
25 |
image_content.append({
|
26 |
"type": "image",
|
27 |
"image": img,
|
28 |
})
|
29 |
|
|
|
30 |
image_content.append({"type": "text", "text": "Generate a story based on these images."})
|
31 |
|
|
|
32 |
messages = [
|
33 |
{
|
34 |
"role": "system",
|
|
|
40 |
}
|
41 |
]
|
42 |
|
|
|
43 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
44 |
image_inputs, video_inputs = process_vision_info(messages)
|
45 |
inputs = processor(
|
|
|
51 |
)
|
52 |
inputs = inputs.to(model.device)
|
53 |
|
|
|
54 |
generated_ids = model.generate(
|
55 |
**inputs,
|
56 |
max_new_tokens=4096,
|
|
|
58 |
temperature=0.7,
|
59 |
top_p=0.9
|
60 |
)
|
61 |
+
|
62 |
generated_ids_trimmed = [
|
63 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
64 |
]
|
|
|
72 |
|
73 |
with gr.Blocks() as demo:
|
74 |
gr.Markdown("# Qwen Storyteller \n## Upload up to 6 images to generate a creative story.")
|
75 |
+
|
76 |
with gr.Row():
|
77 |
with gr.Column():
|
78 |
+
upload_button = gr.UploadButton("Upload up to 6 images", file_types=["image"], file_count="multiple")
|
79 |
+
output_file = gr.File(label="Uploaded Files")
|
|
|
80 |
|
81 |
with gr.Column():
|
82 |
+
outputs = gr.Textbox(label="Generated Story", lines=10)
|
83 |
|
84 |
+
upload_button.upload(lambda files: [f.name for f in files], upload_button, output_file)
|
85 |
+
|
86 |
+
gen_button = gr.Button("Generate", variant="secondary")
|
87 |
+
gen_button.click(generate_story, upload_button, outputs)
|
88 |
|
89 |
if __name__ == "__main__":
|
90 |
demo.launch()
|