DiMeR / app.py
LutaoJiang's picture
Revert "update"
bb7e021
raw
history blame contribute delete
21.4 kB
import os
import gradio as gr
import subprocess
import spaces
import ctypes
import shlex
import torch
import argparse
print(f'gradio version: {gr.__version__}')
# Add command line argument parsing
parser = argparse.ArgumentParser(description='DiMeR Demo')
parser.add_argument('--ui_only', action='store_true', help='Only load the UI interface, do not initialize models (for UI debugging)')
args = parser.parse_args()
UI_ONLY_MODE = args.ui_only
print(f"UI_ONLY_MODE: {UI_ONLY_MODE}")
if not UI_ONLY_MODE:
subprocess.run(
shlex.split(
"pip install ./custom_diffusers --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install --no-index --no-cache-dir pytorch3d -f https://dl.fbaipublicfiles.com/pytorch3d/packaging/wheels/py310_cu121_pyt240/download.html"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/nvdiffrast-0.3.1+torch-py3-none-any.whl --force-reinstall --no-deps"
)
)
subprocess.run(
shlex.split(
"pip install ./extension/renderutils_plugin-0.1.0-cp310-cp310-linux_x86_64.whl --force-reinstall --no-deps"
)
)
# Status variables for tracking if detailed prompt and image have been generated
generated_detailed_prompt = False
generated_image = False
def install_cuda_toolkit():
CUDA_TOOLKIT_URL = "https://developer.download.nvidia.com/compute/cuda/12.1.0/local_installers/cuda_12.1.0_530.30.02_linux.run"
CUDA_TOOLKIT_FILE = "/tmp/%s" % os.path.basename(CUDA_TOOLKIT_URL)
subprocess.call(["wget", "-q", CUDA_TOOLKIT_URL, "-O", CUDA_TOOLKIT_FILE])
subprocess.call(["chmod", "+x", CUDA_TOOLKIT_FILE])
subprocess.call([CUDA_TOOLKIT_FILE, "--silent", "--toolkit"])
os.environ["CUDA_HOME"] = "/usr/local/cuda"
os.environ["PATH"] = "%s/bin:%s" % (os.environ["CUDA_HOME"], os.environ["PATH"])
os.environ["LD_LIBRARY_PATH"] = "%s/lib:%s" % (
os.environ["CUDA_HOME"],
"" if "LD_LIBRARY_PATH" not in os.environ else os.environ["LD_LIBRARY_PATH"],
)
# Fix: arch_list[-1] += '+PTX'; IndexError: list index out of range
os.environ["TORCH_CUDA_ARCH_LIST"] = "8.0;8.6"
print("==> finished installation")
# Only execute CUDA installation in non-UI debug mode
if not UI_ONLY_MODE:
install_cuda_toolkit()
@spaces.GPU
def check_gpu():
if "CUDA_VISIBLE_DEVICES" in os.environ:
del os.environ["CUDA_VISIBLE_DEVICES"]
os.environ['CUDA_HOME'] = '/usr/local/cuda-12.1'
os.environ['PATH'] += ':/usr/local/cuda-12.1/bin'
os.environ['LD_LIBRARY_PATH'] = "/usr/local/cuda-12.1/lib64:" + os.environ.get('LD_LIBRARY_PATH', '')
subprocess.run(['nvidia-smi']) # Test if CUDA is available
print(f"torch.cuda.is_available:{torch.cuda.is_available()}")
print("Device count:", torch.cuda.device_count())
# test nvdiffrast
import nvdiffrast.torch as dr
dr.RasterizeCudaContext(device="cuda:0")
print("nvdiffrast initialized successfully")
# Only check GPU in non-UI debug mode
if not UI_ONLY_MODE:
check_gpu()
import base64
import re
import sys
sys.path.append(os.path.abspath(os.path.join(__file__, '../')))
if 'OMP_NUM_THREADS' not in os.environ:
os.environ['OMP_NUM_THREADS'] = '32'
import shutil
import json
import requests
import shutil
import threading
from PIL import Image
import time
import trimesh
import random
import time
import numpy as np
# Only import video rendering module and initialize models in non-UI debug mode
if not UI_ONLY_MODE:
from video_render import render_video_from_obj
access_token = os.getenv("HUGGINGFACE_TOKEN")
from pipeline.kiss3d_wrapper import init_wrapper_from_config, run_text_to_3d, run_image_to_3d, image2mesh_preprocess, image2mesh_main
# Add logo file path and hyperlinks
LOGO_PATH = "app_assets/logo_temp_.png" # Update this to the actual path of your logo
ARXIV_LINK = "https://arxiv.org/pdf/2504.17670"
GITHUB_LINK = "https://github.com/lutao2021/DiMeR"
# Only initialize models in non-UI debug mode
if not UI_ONLY_MODE:
k3d_wrapper = init_wrapper_from_config('./pipeline/pipeline_config/default.yaml')
from models.ISOMER.scripts.utils import fix_vert_color_glb
torch.backends.cuda.matmul.allow_tf32 = True
TEMP_MESH_ADDRESS=''
mesh_cache = None
preprocessed_input_image = None
def save_cached_mesh():
global mesh_cache
print('save_cached_mesh() called')
return mesh_cache
def save_py3dmesh_with_trimesh_fast(meshes, save_glb_path=TEMP_MESH_ADDRESS, apply_sRGB_to_LinearRGB=True):
from pytorch3d.structures import Meshes
import trimesh
# convert from pytorch3d meshes to trimesh mesh
vertices = meshes.verts_packed().cpu().float().numpy()
triangles = meshes.faces_packed().cpu().long().numpy()
np_color = meshes.textures.verts_features_packed().cpu().float().numpy()
if save_glb_path.endswith(".glb"):
# rotate 180 along +Y
vertices[:, [0, 2]] = -vertices[:, [0, 2]]
def srgb_to_linear(c_srgb):
c_linear = np.where(c_srgb <= 0.04045, c_srgb / 12.92, ((c_srgb + 0.055) / 1.055) ** 2.4)
return c_linear.clip(0, 1.)
if apply_sRGB_to_LinearRGB:
np_color = srgb_to_linear(np_color)
assert vertices.shape[0] == np_color.shape[0]
assert np_color.shape[1] == 3
assert 0 <= np_color.min() and np_color.max() <= 1, f"min={np_color.min()}, max={np_color.max()}"
mesh = trimesh.Trimesh(vertices=vertices, faces=triangles, vertex_colors=np_color)
mesh.remove_unreferenced_vertices()
# save mesh
mesh.export(save_glb_path)
if save_glb_path.endswith(".glb"):
fix_vert_color_glb(save_glb_path)
print(f"saving to {save_glb_path}")
@spaces.GPU
def text_to_detailed(prompt, seed=None):
# test nvdiffrast
import nvdiffrast.torch as dr
dr.RasterizeCudaContext(device="cuda:0")
print("nvdiffrast initialized successfully")
print(f"torch.cuda.is_available():{torch.cuda.is_available()}")
# print(f"Before text_to_detailed: {torch.cuda.memory_allocated() / 1024**3} GB")
return k3d_wrapper.get_detailed_prompt(prompt, seed)
@spaces.GPU(duration=120)
def text_to_image(prompt, seed=None, strength=1.0,lora_scale=1.0, num_inference_steps=18, redux_hparam=None, init_image=None, **kwargs):
# subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
# print(f"Before text_to_image: {torch.cuda.memory_allocated() / 1024**3} GB")
# k3d_wrapper.flux_pipeline.enable_xformers_memory_efficient_attention()
k3d_wrapper.renew_uuid()
init_image = None
# if init_image_path is not None:
# init_image = Image.open(init_image_path)
subprocess.run(['nvidia-smi']) # Test if CUDA is available
with torch.no_grad():
result = k3d_wrapper.generate_3d_bundle_image_text(
prompt,
image=init_image,
strength=strength,
lora_scale=lora_scale,
num_inference_steps=num_inference_steps,
seed=int(seed) if seed is not None else None,
redux_hparam=redux_hparam,
save_intermediate_results=True,
**kwargs)
return result[-1]
@spaces.GPU(duration=120)
def image2mesh_preprocess_(input_image_, seed, use_mv_rgb=True):
global preprocessed_input_image
seed = int(seed) if seed is not None else None
# TODO: delete this later
# k3d_wrapper.del_llm_model()
input_image_save_path, reference_save_path, caption = image2mesh_preprocess(k3d_wrapper, input_image_, seed, use_mv_rgb)
preprocessed_input_image = Image.open(input_image_save_path)
return reference_save_path, caption
@spaces.GPU(duration=120)
def image2mesh_main_(reference_3d_bundle_image, caption, seed, strength1=0.5, strength2=0.95, enable_redux=True, use_controlnet=True, if_video=True):
subprocess.run(['nvidia-smi'])
global mesh_cache
seed = int(seed) if seed is not None else None
# TODO: delete this later
# k3d_wrapper.del_llm_model()
input_image = preprocessed_input_image
reference_3d_bundle_image = torch.tensor(reference_3d_bundle_image).permute(2,0,1)/255
gen_save_path, recon_mesh_path = image2mesh_main(k3d_wrapper, input_image, reference_3d_bundle_image, caption=caption, seed=seed, strength1=strength1, strength2=strength2, enable_redux=enable_redux, use_controlnet=use_controlnet)
mesh_cache = recon_mesh_path
if if_video:
video_path = recon_mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
render_video_from_obj(recon_mesh_path, video_path)
print(f"After bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
return gen_save_path, video_path, mesh_cache
else:
return gen_save_path, recon_mesh_path, mesh_cache
# return gen_save_path, recon_mesh_path
@spaces.GPU(duration=120)
def bundle_image_to_mesh(
gen_3d_bundle_image,
camera_radius=3.5,
lrm_radius = 3.5,
isomer_radius = 4.2,
reconstruction_stage1_steps = 0,
reconstruction_stage2_steps = 50,
save_intermediate_results=False
):
global mesh_cache
print(f"Before bundle_image_to_mesh: {torch.cuda.memory_allocated() / 1024**3} GB")
k3d_wrapper.recon_model.init_flexicubes_geometry("cuda:0", fovy=50.0)
print(f"init_flexicubes_geometry done")
# TODO: delete this later
k3d_wrapper.del_llm_model()
print(f"Before bundle_image_to_mesh after deleting llm model: {torch.cuda.memory_allocated() / 1024**3} GB")
gen_3d_bundle_image = torch.tensor(gen_3d_bundle_image).permute(2,0,1)/255
recon_mesh_path = k3d_wrapper.reconstruct_3d_bundle_image(gen_3d_bundle_image, camera_radius=camera_radius, lrm_render_radius=lrm_radius, isomer_radius=isomer_radius, save_intermediate_results=save_intermediate_results, reconstruction_stage1_steps=int(reconstruction_stage1_steps), reconstruction_stage2_steps=int(reconstruction_stage2_steps))
mesh_cache = recon_mesh_path
print(f"Mesh generated at: {mesh_cache}")
# Check if file exists
if not os.path.exists(mesh_cache):
print(f"Warning: Generated mesh file does not exist: {mesh_cache}")
return None, mesh_cache
return recon_mesh_path, mesh_cache
# _HEADER_=f"""
# <img src="{LOGO_PATH}">
# <h2><b>Official 🤗 Gradio Demo</b></h2>
# <h2><b>Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation</b></h2>
# <h2>Try our demo:Please click the buttons in sequence. Feel free to redo some steps multiple times until you get a </h2>
# [![arXiv](https://img.shields.io/badge/arXiv-Link-red)]({ARXIV_LINK}) [![GitHub](https://img.shields.io/badge/GitHub-Repo-blue)]({GITHUB_LINK})
# """
_STAR_ = f"""
<h2>If DiMeR is helpful, please help to ⭐ the <a href={GITHUB_LINK} target='_blank'>Github Repo</a>. Sincerely Thanks!</h2>
"""
_CITE_ = r"""
<h2>📝 Citation</h2>
<h2>If you find our work useful for your research or applications, please cite using the following papers:</h2>
```bibtex
@article{jiang2025dimer,
title={DiMeR: Disentangled Mesh Reconstruction Model},
author={Jiang, Lutao and Lin, Jiantao and Chen, Kanghao and Ge, Wenhang and Yang, Xin and Jiang, Yifan and Lyu, Yuanhuiyi and Zheng, Xu and Chen, Yingcong},
journal={arXiv preprint arXiv:2504.17670},
year={2025}
}
@article{lin2025kiss3dgenrepurposingimagediffusion,
title={Kiss3DGen: Repurposing Image Diffusion Models for 3D Asset Generation},
author={Jiantao Lin, Xin Yang, Meixi Chen, Yingjie Xu, Dongyu Yan, Leyi Wu, Xinli Xu, Lie XU, Shunsi Zhang, Ying-Cong Chen},
journal={arXiv preprint arXiv:2503.01370},
year={2025}
}
```
📋 **License**
Apache-2.0 LICENSE. Please refer to the [LICENSE file](https://huggingface.co/spaces/TencentARC/InstantMesh/blob/main/LICENSE) for details.
📧 **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
def image_to_base64(image_path):
"""Converts an image file to a base64-encoded string."""
with open(image_path, "rb") as img_file:
return base64.b64encode(img_file.read()).decode('utf-8')
# def main():
if not UI_ONLY_MODE:
torch.set_grad_enabled(False)
# Convert the logo image to base64
logo_base64 = image_to_base64(LOGO_PATH)
# with gr.Blocks() as demo:
with gr.Blocks(css="""
.orange-button {
background-color: #FF8C00 !important;
border-color: #FF8C00 !important;
color: black !important;
}
.gradio-container {
max-width: 1000px;
margin: auto;
width: 100%;
}
#center-align-column {
display: flex;
justify-content: center;
align-items: center;
}
#right-align-column {
display: flex;
justify-content: flex-end;
align-items: center;
}
h1 {text-align: center;}
h2 {text-align: center;}
h3 {text-align: center;}
p {text-align: center;}
img {text-align: right;}
.right {
display: block;
margin-left: auto;
}
.center {
display: block;
margin-left: auto;
margin-right: auto;
width: 50%;
}
#content-container {
max-width: 1200px;
margin: 0 auto;
}
""",elem_id="col-container") as demo:
# Header Section
# gr.Image(value=LOGO_PATH, width=64, height=64)
# gr.Markdown(_HEADER_)
with gr.Row(elem_id="content-container"):
with gr.Column(scale=7, elem_id="center-align-column"):
gr.Markdown(f"""
# Official 🤗 Gradio Demo
# DiMeR: Disentangled Mesh Reconstruction Model""")
gr.HTML(f"""
<div style="display: flex; justify-content: center; align-items: center; gap: 10px;">
<a href="{ARXIV_LINK}" target="_blank">
<img src="https://img.shields.io/badge/arXiv-Link-red" alt="arXiv">
</a>
<a href="{GITHUB_LINK}" target="_blank">
<img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub">
</a>
</div>
""")
gr.Markdown(_STAR_)
# Tabs Section
with gr.Tabs() as main_tabs:
with gr.TabItem('Text-to-3D', id='tab_text_to_3d'):
gr.Markdown("Click the button 'One-click Generation' or click the buttons one by one.")
with gr.Row():
with gr.Column(scale=1):
prompt = gr.Textbox(value="", label="Input Prompt", lines=4, placeholder="input prompt here, english or chinese")
# Modify the Examples section to display horizontally
gr.Examples(
examples=[
["A cat"],
["A person wearing a virtual reality headset, sitting position, bent legs, clasped hands."],
["A battle mech in a mix of red, blue, and black color, with a cannon on the head."],
["骷髅头, 邪恶的"],
],
inputs=[prompt],
label="Example Prompts",
examples_per_page=4 # Force all examples to be on a single row
)
with gr.Accordion("Advanced Parameters", open=False):
seed1 = gr.Number(value=666, label="Seed")
btn_one_click_generate = gr.Button("One-click Generation", elem_id="one-click-generate-btn", elem_classes=["orange-button"])
btn_text2detailed = gr.Button("1. Refine to detailed prompt")
gr.Markdown("---")
detailed_prompt = gr.Textbox(value="", label="Detailed Prompt", placeholder="detailed prompt will be generated here base on your input prompt. You can also edit this prompt", lines=10, interactive=True)
with gr.Accordion("Advanced Parameters", open=False):
with gr.Row():
img_gen_seed = gr.Number(value=666, label="Image Generation Seed")
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=18, step=1, label="Inference Steps")
with gr.Row():
strength = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.05, label="Strength")
lora_scale = gr.Slider(minimum=0.0, maximum=2.0, value=1.0, step=0.05, label="LoRA Scale")
btn_text2img = gr.Button("2. Generate Images")
with gr.Column(scale=1):
output_image1 = gr.Image(label="Generated Image", interactive=False, width=800, height=350, container=True)
with gr.Accordion("Advanced Parameters", open=False):
camera_radius = gr.Slider(minimum=3.0, maximum=6.0, value=3.5, step=0.01, label="Camera Radius")
btn_gen_mesh = gr.Button("3. Generate Mesh")
# Textured mesh view
output_mesh_textured = gr.Model3D(label="3D Mesh Viewer", interactive=False, height=300)
download_1 = gr.DownloadButton(label="Download Mesh", interactive=False)
with gr.TabItem('Image-to-3D (coming soon)', id='tab_image_to_3d'):
gr.Markdown("## Coming Soon")
with gr.TabItem('Sparse-view-to-3D (coming soon)', id='tab_sparse_view_to_3d'):
gr.Markdown("## Coming Soon")
# Button Click Events
# Text2
btn_text2detailed.click(fn=text_to_detailed, inputs=[prompt, seed1], outputs=detailed_prompt)
btn_text2img.click(fn=text_to_image, inputs=[detailed_prompt, img_gen_seed, strength, lora_scale, num_inference_steps], outputs=output_image1)
# Split the mesh generation and video rendering steps
btn_gen_mesh.click(fn=bundle_image_to_mesh, inputs=[output_image1, camera_radius], outputs=[output_mesh_textured, download_1]).then(
lambda: gr.Button(interactive=True),
outputs=[download_1],
)
# Define a helper function for video rendering and correctly returning the video path
# def render_and_return_video(mesh_path):
# if not mesh_path or not os.path.exists(mesh_path):
# print(f"Warning: Mesh file doesn't exist: {mesh_path}")
# return None
# video_path = mesh_path.replace('.obj','.mp4').replace('.glb','.mp4')
# print(f"Rendering video to: {video_path}")
# try:
# render_video_from_obj(mesh_path, video_path)
# print(f"Video successfully rendered to: {video_path}")
# if os.path.exists(video_path):
# return video_path
# else:
# print(f"Warning: Video file was not created: {video_path}")
# return None
# except Exception as e:
# print(f"Error during video rendering: {e}")
# return None
# Add separate button for video rendering
# btn_render_video.click(fn=render_and_return_video,
# inputs=download_1,
# outputs=output_video1)
# Add a new function for one-click generation
def one_click_generate(input_prompt, seed):
return input_prompt, seed
# Define functions for sequential execution steps
def sequential_step1(input_prompt, seed):
# Step 1: Generate detailed prompt
detailed = text_to_detailed(input_prompt, seed)
return detailed
def sequential_step2(detailed, seed):
# Step 2: Generate image
image = text_to_image(detailed, seed, 1.0, 1.0, 18)
return image
def sequential_step3(image):
# Step 3: Generate 3D mesh
geometry_mesh_path, textured_mesh_path, mesh_path = bundle_image_to_mesh(image)
return geometry_mesh_path, textured_mesh_path, mesh_path
def enable_download_button():
return gr.Button(interactive=True)
# Modify one-click generation button's click event using chained .then() calls
btn_one_click_generate.click(
fn=one_click_generate,
inputs=[prompt, seed1],
outputs=[prompt, img_gen_seed]
).then(
fn=sequential_step1,
inputs=[prompt, img_gen_seed],
outputs=detailed_prompt
).then(
fn=sequential_step2,
inputs=[detailed_prompt, img_gen_seed],
outputs=output_image1
).then(
fn=sequential_step3,
inputs=output_image1,
outputs=[output_mesh_textured, download_1]
).then(
fn=enable_download_button,
outputs=download_1
)
with gr.Row():
pass
with gr.Row():
gr.Markdown(_CITE_)
# Modify launch parameters to ensure background processing can continue
demo.launch()
# if __name__ == "__main__":
# main()