Spaces:
Runtime error
Runtime error
| # Copyright (c) OpenMMLab. All rights reserved. | |
| from typing import Dict, List, Tuple | |
| import torch | |
| from mmengine.structures import InstanceData | |
| from torch import Tensor | |
| import torch.nn.functional as F | |
| from mmdet.registry import MODELS | |
| from mmdet.structures import SampleList, OptSampleList, TrackDataSample | |
| from mmdet.utils import ConfigType, OptConfigType, OptMultiConfig | |
| from mmdet.models.detectors.single_stage import SingleStageDetector | |
| from seg.models.utils import mask_pool | |
| class Mask2formerVideo(SingleStageDetector): | |
| r"""Implementation of `Per-Pixel Classification is | |
| NOT All You Need for Semantic Segmentation | |
| <https://arxiv.org/pdf/2107.06278>`_.""" | |
| OVERLAPPING = None | |
| def __init__(self, | |
| backbone: ConfigType, | |
| neck: OptConfigType = None, | |
| panoptic_head: OptConfigType = None, | |
| panoptic_fusion_head: OptConfigType = None, | |
| train_cfg: OptConfigType = None, | |
| test_cfg: OptConfigType = None, | |
| data_preprocessor: OptConfigType = None, | |
| inference_sam: bool = False, | |
| init_cfg: OptMultiConfig = None | |
| ): | |
| super(SingleStageDetector, self).__init__( | |
| data_preprocessor=data_preprocessor, init_cfg=init_cfg) | |
| self.backbone = MODELS.build(backbone) | |
| if neck is not None: | |
| self.neck = MODELS.build(neck) | |
| panoptic_head_ = panoptic_head.deepcopy() | |
| panoptic_head_.update(train_cfg=train_cfg) | |
| panoptic_head_.update(test_cfg=test_cfg) | |
| self.panoptic_head = MODELS.build(panoptic_head_) | |
| panoptic_fusion_head_ = panoptic_fusion_head.deepcopy() | |
| panoptic_fusion_head_.update(test_cfg=test_cfg) | |
| self.panoptic_fusion_head = MODELS.build(panoptic_fusion_head_) | |
| self.num_things_classes = self.panoptic_head.num_things_classes | |
| self.num_stuff_classes = self.panoptic_head.num_stuff_classes | |
| self.num_classes = self.panoptic_head.num_classes | |
| self.train_cfg = train_cfg | |
| self.test_cfg = test_cfg | |
| self.alpha = 0.4 | |
| self.beta = 0.8 | |
| self.inference_sam = inference_sam | |
| def loss(self, batch_inputs: Tensor, | |
| batch_data_samples: SampleList) -> Dict[str, Tensor]: | |
| """ | |
| Args: | |
| batch_inputs (Tensor): Input images of shape (N, C, H, W). | |
| These should usually be mean centered and std scaled. | |
| batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
| data samples. It usually includes information such | |
| as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
| Returns: | |
| dict[str, Tensor]: a dictionary of loss components | |
| """ | |
| if isinstance(batch_data_samples[0], TrackDataSample): | |
| bs, num_frames, three, h, w = batch_inputs.shape | |
| assert three == 3, "Only supporting images with 3 channels." | |
| x = batch_inputs.reshape((bs * num_frames, three, h, w)) | |
| x = self.extract_feat(x) | |
| else: | |
| x = self.extract_feat(batch_inputs) | |
| losses = self.panoptic_head.loss(x, batch_data_samples) | |
| return losses | |
| def predict(self, | |
| batch_inputs: Tensor, | |
| batch_data_samples: SampleList, | |
| rescale: bool = True) -> SampleList: | |
| """Predict results from a batch of inputs and data samples with post- | |
| processing. | |
| Args: | |
| batch_inputs (Tensor): Inputs with shape (N, C, H, W). | |
| batch_data_samples (List[:obj:`DetDataSample`]): The Data | |
| Samples. It usually includes information such as | |
| `gt_instance`, `gt_panoptic_seg` and `gt_sem_seg`. | |
| rescale (bool): Whether to rescale the results. | |
| Defaults to True. | |
| Returns: | |
| list[:obj:`DetDataSample`]: Detection results of the | |
| input images. Each DetDataSample usually contain | |
| 'pred_instances' and `pred_panoptic_seg`. And the | |
| ``pred_instances`` usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape | |
| (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), | |
| the last dimension 4 arrange as (x1, y1, x2, y2). | |
| - masks (Tensor): Has a shape (num_instances, H, W). | |
| And the ``pred_panoptic_seg`` contains the following key | |
| - sem_seg (Tensor): panoptic segmentation mask, has a | |
| shape (1, h, w). | |
| """ | |
| if isinstance(batch_data_samples[0], TrackDataSample): | |
| bs, num_frames, three, h, w = batch_inputs.shape | |
| assert three == 3, "Only supporting images with 3 channels." | |
| x = batch_inputs.reshape((bs * num_frames, three, h, w)) | |
| feats = self.extract_feat(x) | |
| else: | |
| num_frames = 0 | |
| bs = batch_inputs.shape[0] | |
| feats = self.extract_feat(batch_inputs) | |
| # in case no queries are provided for prompt. | |
| if self.inference_sam and len(batch_data_samples[0].gt_instances) == 0: | |
| for idx, data_sample in enumerate(batch_data_samples): | |
| results = InstanceData() | |
| data_sample.pred_instances = results | |
| return batch_data_samples | |
| mask_cls_results, mask_pred_results, iou_results = self.panoptic_head.predict(feats, batch_data_samples) | |
| if self.OVERLAPPING is not None: | |
| assert len(self.OVERLAPPING) == self.num_classes | |
| mask_cls_results = self.open_voc_inference(feats, mask_cls_results, mask_pred_results) | |
| if batch_data_samples[0].data_tag == 'sam': | |
| return mask_pred_results.cpu().numpy() | |
| # # if self.inference_sam: | |
| # for idx, data_sample in enumerate(batch_data_samples): | |
| # results = InstanceData() | |
| # mask = mask_pred_results[idx] | |
| # img_height, img_width = data_sample.metainfo['img_shape'][:2] | |
| # mask = mask[:, :img_height, :img_width] | |
| # ori_height, ori_width = data_sample.metainfo['ori_shape'][:2] | |
| # mask = F.interpolate( | |
| # mask[:, None], | |
| # size=(ori_height, ori_width), | |
| # mode='bilinear', | |
| # align_corners=False)[:, 0] | |
| # results.masks = mask.sigmoid() > 0.5 | |
| # data_sample.pred_instances = results | |
| # return batch_data_samples | |
| if num_frames > 0: | |
| for frame_id in range(num_frames): | |
| results_list_img = self.panoptic_fusion_head.predict( | |
| mask_cls_results, | |
| mask_pred_results[:, :, frame_id], | |
| [batch_data_samples[idx][frame_id] for idx in range(bs)], | |
| rescale=rescale | |
| ) | |
| _ = self.add_track_pred_to_datasample( | |
| [batch_data_samples[idx][frame_id] for idx in range(bs)], results_list_img | |
| ) | |
| results = batch_data_samples | |
| else: | |
| results_list = self.panoptic_fusion_head.predict( | |
| mask_cls_results, | |
| mask_pred_results, | |
| batch_data_samples, | |
| iou_results=iou_results, | |
| rescale=rescale | |
| ) | |
| results = self.add_pred_to_datasample(batch_data_samples, results_list) | |
| return results_list | |
| def add_pred_to_datasample(self, data_samples: SampleList, | |
| results_list: List[dict]) -> SampleList: | |
| """Add predictions to `DetDataSample`. | |
| Args: | |
| data_samples (list[:obj:`DetDataSample`], optional): A batch of | |
| data samples that contain annotations and predictions. | |
| results_list (List[dict]): Instance segmentation, segmantic | |
| segmentation and panoptic segmentation results. | |
| Returns: | |
| list[:obj:`DetDataSample`]: Detection results of the | |
| input images. Each DetDataSample usually contain | |
| 'pred_instances' and `pred_panoptic_seg`. And the | |
| ``pred_instances`` usually contains following keys. | |
| - scores (Tensor): Classification scores, has a shape | |
| (num_instance, ) | |
| - labels (Tensor): Labels of bboxes, has a shape | |
| (num_instances, ). | |
| - bboxes (Tensor): Has a shape (num_instances, 4), | |
| the last dimension 4 arrange as (x1, y1, x2, y2). | |
| - masks (Tensor): Has a shape (num_instances, H, W). | |
| And the ``pred_panoptic_seg`` contains the following key | |
| - sem_seg (Tensor): panoptic segmentation mask, has a | |
| shape (1, h, w). | |
| """ | |
| for data_sample, pred_results in zip(data_samples, results_list): | |
| if 'pan_results' in pred_results: | |
| data_sample.pred_panoptic_seg = pred_results['pan_results'] | |
| if 'ins_results' in pred_results: | |
| data_sample.pred_instances = pred_results['ins_results'] | |
| assert 'sem_results' not in pred_results | |
| return data_samples | |
| def add_track_pred_to_datasample(self, data_samples: SampleList, results_list: List[dict]) -> SampleList: | |
| for data_sample, pred_results in zip(data_samples, results_list): | |
| if 'pan_results' in pred_results: | |
| assert self.num_stuff_classes > 0 | |
| pred_results['pan_results'].sem_seg = pred_results['pan_results'].sem_seg.cpu() | |
| data_sample.pred_track_panoptic_seg = pred_results['pan_results'] | |
| if 'ins_results' in pred_results: | |
| bboxes = pred_results['ins_results']['bboxes'] | |
| labels = pred_results['ins_results']['labels'] | |
| track_ids = torch.arange(len(bboxes), dtype=labels.dtype, device=bboxes.device) + 1 | |
| pred_results['ins_results']['instances_id'] = track_ids | |
| data_sample.pred_track_instances = pred_results['ins_results'] | |
| if 'pro_results' in pred_results: | |
| data_sample.pred_track_proposal = pred_results['pro_results'] | |
| assert 'sem_results' not in pred_results | |
| return data_samples | |
| def _forward( | |
| self, | |
| batch_inputs: Tensor, | |
| batch_data_samples: OptSampleList = None) -> Tuple[List[Tensor]]: | |
| """Network forward process. Usually includes backbone, neck and head | |
| forward without any post-processing. | |
| Args: | |
| batch_inputs (Tensor): Inputs with shape (N, C, H, W). | |
| batch_data_samples (list[:obj:`DetDataSample`]): The batch | |
| data samples. It usually includes information such | |
| as `gt_instance` or `gt_panoptic_seg` or `gt_sem_seg`. | |
| Returns: | |
| tuple[List[Tensor]]: A tuple of features from ``panoptic_head`` | |
| forward. | |
| """ | |
| if isinstance(batch_data_samples[0], TrackDataSample): | |
| bs, num_frames, three, h, w = batch_inputs.shape | |
| assert three == 3, "Only supporting images with 3 channels." | |
| x = batch_inputs.reshape((bs * num_frames, three, h, w)) | |
| feats = self.extract_feat(x) | |
| else: | |
| feats = self.extract_feat(batch_inputs) | |
| results = self.panoptic_head.forward(feats, batch_data_samples) | |
| return results | |
| def open_voc_inference(self, feats, mask_cls_results, mask_pred_results): | |
| if len(mask_pred_results.shape) == 5: | |
| batch_size = mask_cls_results.shape[0] | |
| num_frames = mask_pred_results.shape[2] | |
| mask_pred_results = mask_pred_results.permute(0, 2, 1, 3, 4).flatten(0, 1) | |
| else: | |
| batch_size = mask_cls_results.shape[0] | |
| num_frames = 0 | |
| clip_feat = self.backbone.get_clip_feature(feats[-1]) | |
| clip_feat_mask = F.interpolate( | |
| mask_pred_results, | |
| size=clip_feat.shape[-2:], | |
| mode='bilinear', | |
| align_corners=False | |
| ) | |
| if num_frames > 0: | |
| clip_feat_mask = clip_feat_mask.unflatten(0, (batch_size, num_frames)).permute(0, 2, 1, 3, 4).flatten(2, 3) | |
| clip_feat = clip_feat.unflatten(0, (batch_size, num_frames)).permute(0, 2, 1, 3, 4).flatten(2, 3) | |
| instance_feat = mask_pool(clip_feat, clip_feat_mask) | |
| instance_feat = self.backbone.forward_feat(instance_feat) | |
| clip_logit = self.panoptic_head.forward_logit(instance_feat) | |
| clip_logit = clip_logit[..., :-1] | |
| query_logit = mask_cls_results[..., :-1] | |
| clip_logit = clip_logit.softmax(-1) | |
| query_logit = query_logit.softmax(-1) | |
| overlapping_mask = torch.tensor(self.OVERLAPPING, dtype=torch.float32, device=clip_logit.device) | |
| valid_masking = ((clip_feat_mask > 0).to(dtype=torch.float32).flatten(-2).sum(-1) > 0).to( | |
| torch.float32)[..., None] | |
| alpha = torch.ones_like(clip_logit) * self.alpha * valid_masking | |
| beta = torch.ones_like(clip_logit) * self.beta * valid_masking | |
| cls_logits_seen = ( | |
| (query_logit ** (1 - alpha) * clip_logit ** alpha).log() | |
| * overlapping_mask | |
| ) | |
| cls_logits_unseen = ( | |
| (query_logit ** (1 - beta) * clip_logit ** beta).log() | |
| * (1 - overlapping_mask) | |
| ) | |
| cls_results = cls_logits_seen + cls_logits_unseen | |
| is_void_prob = F.softmax(mask_cls_results, dim=-1)[..., -1:] | |
| mask_cls_results = torch.cat([ | |
| cls_results.softmax(-1) * (1.0 - is_void_prob), is_void_prob], dim=-1) | |
| mask_cls_results = torch.log(mask_cls_results + 1e-8) | |
| return mask_cls_results | |