adjust examples
Browse files- app.py +2 -1
- images/annualcrop.jpg +0 -0
- images/forest.jpg +0 -0
- images/herbaceousvegetation.jpg +0 -0
- images/pasture.jpg +0 -0
- images/permanentcrop.jpg +0 -0
- images/residential.jpg +0 -0
- images/sealake.jpg +0 -0
- main.ipynb +5 -14
app.py
CHANGED
|
@@ -26,7 +26,8 @@ iface = gr.Interface(
|
|
| 26 |
outputs=gr.Label(num_top_classes=10),
|
| 27 |
title="Sentinel Image Classifier",
|
| 28 |
description="Upload a satellite image and the classifier will predict the type of land cover or feature.",
|
| 29 |
-
examples=["images/forest.jpg", "images/highway.jpg", "images/industrial.jpg", "images/residential.jpg", "images/river.jpg"]
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
iface.launch()
|
|
|
|
| 26 |
outputs=gr.Label(num_top_classes=10),
|
| 27 |
title="Sentinel Image Classifier",
|
| 28 |
description="Upload a satellite image and the classifier will predict the type of land cover or feature.",
|
| 29 |
+
examples = ["images/annualcrop.jpg", "images/forest.jpg", "images/herbaceousvegetation.jpg", "images/highway.jpg", "images/industrial.jpg", "images/pasture.jpg", "images/permanentcrop.jpg", "images/residential.jpg", "images/river.jpg", "images/sealake.jpg"]
|
| 30 |
+
|
| 31 |
)
|
| 32 |
|
| 33 |
iface.launch()
|
images/annualcrop.jpg
ADDED
|
images/forest.jpg
CHANGED
|
|
images/herbaceousvegetation.jpg
ADDED
|
images/pasture.jpg
ADDED
|
images/permanentcrop.jpg
ADDED
|
images/residential.jpg
CHANGED
|
|
images/sealake.jpg
ADDED
|
main.ipynb
CHANGED
|
@@ -2,14 +2,14 @@
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
-
"execution_count":
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [
|
| 8 |
{
|
| 9 |
"name": "stdout",
|
| 10 |
"output_type": "stream",
|
| 11 |
"text": [
|
| 12 |
-
"Running on local URL: http://127.0.0.1:
|
| 13 |
"\n",
|
| 14 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 15 |
]
|
|
@@ -17,7 +17,7 @@
|
|
| 17 |
{
|
| 18 |
"data": {
|
| 19 |
"text/html": [
|
| 20 |
-
"<div><iframe src=\"http://127.0.0.1:
|
| 21 |
],
|
| 22 |
"text/plain": [
|
| 23 |
"<IPython.core.display.HTML object>"
|
|
@@ -30,18 +30,9 @@
|
|
| 30 |
"data": {
|
| 31 |
"text/plain": []
|
| 32 |
},
|
| 33 |
-
"execution_count":
|
| 34 |
"metadata": {},
|
| 35 |
"output_type": "execute_result"
|
| 36 |
-
},
|
| 37 |
-
{
|
| 38 |
-
"name": "stdout",
|
| 39 |
-
"output_type": "stream",
|
| 40 |
-
"text": [
|
| 41 |
-
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 916ms/step\n",
|
| 42 |
-
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 15ms/step\n",
|
| 43 |
-
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 14ms/step\n"
|
| 44 |
-
]
|
| 45 |
}
|
| 46 |
],
|
| 47 |
"source": [
|
|
@@ -73,7 +64,7 @@
|
|
| 73 |
" outputs=gr.Label(num_top_classes=10),\n",
|
| 74 |
" title=\"Sentinel Image Classifier\",\n",
|
| 75 |
" description=\"Upload a satellite image and the classifier will predict the type of land cover or feature.\",\n",
|
| 76 |
-
" examples=[\"images/forest.jpg\", \"images/highway.jpg\", \"images/industrial.jpg\", \"images/residential.jpg\", \"images/river.jpg\"]\n",
|
| 77 |
")\n",
|
| 78 |
"# Launch the interface\n",
|
| 79 |
"iface.launch(share=False)\n"
|
|
|
|
| 2 |
"cells": [
|
| 3 |
{
|
| 4 |
"cell_type": "code",
|
| 5 |
+
"execution_count": 30,
|
| 6 |
"metadata": {},
|
| 7 |
"outputs": [
|
| 8 |
{
|
| 9 |
"name": "stdout",
|
| 10 |
"output_type": "stream",
|
| 11 |
"text": [
|
| 12 |
+
"Running on local URL: http://127.0.0.1:7881\n",
|
| 13 |
"\n",
|
| 14 |
"To create a public link, set `share=True` in `launch()`.\n"
|
| 15 |
]
|
|
|
|
| 17 |
{
|
| 18 |
"data": {
|
| 19 |
"text/html": [
|
| 20 |
+
"<div><iframe src=\"http://127.0.0.1:7881/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 21 |
],
|
| 22 |
"text/plain": [
|
| 23 |
"<IPython.core.display.HTML object>"
|
|
|
|
| 30 |
"data": {
|
| 31 |
"text/plain": []
|
| 32 |
},
|
| 33 |
+
"execution_count": 30,
|
| 34 |
"metadata": {},
|
| 35 |
"output_type": "execute_result"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
}
|
| 37 |
],
|
| 38 |
"source": [
|
|
|
|
| 64 |
" outputs=gr.Label(num_top_classes=10),\n",
|
| 65 |
" title=\"Sentinel Image Classifier\",\n",
|
| 66 |
" description=\"Upload a satellite image and the classifier will predict the type of land cover or feature.\",\n",
|
| 67 |
+
" examples = [\"images/annualcrop.jpg\", \"images/forest.jpg\", \"images/herbaceousvegetation.jpg\", \"images/highway.jpg\", \"images/industrial.jpg\", \"images/pasture.jpg\", \"images/permanentcrop.jpg\", \"images/residential.jpg\", \"images/river.jpg\", \"images/sealake.jpg\"]\n",
|
| 68 |
")\n",
|
| 69 |
"# Launch the interface\n",
|
| 70 |
"iface.launch(share=False)\n"
|