import streamlit as st import pandas as pd import plotly.express as px from data_manager import get_data from wordcloud import WordCloud, STOPWORDS import matplotlib.pyplot as plt def display_companies_by_sector(df): sector_counts = df['libelle_section_naf'].value_counts().reset_index() sector_counts.columns = ['Secteur', 'Nombre'] fig = px.bar(sector_counts, x='Secteur', y='Nombre', color='Nombre', labels={'Nombre': ''}, template='plotly_white') fig.update_layout(xaxis_tickangle=-45, showlegend=False) fig.update_traces(showlegend=False) st.plotly_chart(fig) def display_company_sizes(df): fig = px.histogram(df, x='tranche_effectif_entreprise', labels={'tranche_effectif_entreprise':"Taille de l'entreprise", 'count':'Nombre'}, template='plotly_white') fig.update_traces(marker_color='green') fig.update_layout(yaxis_title="Nombre") st.plotly_chart(fig) def display_companies_by_commune(df): commune_counts = df['commune'].value_counts(normalize=True).reset_index() commune_counts.columns = ['Commune', 'Pourcentage'] fig = px.pie(commune_counts, values='Pourcentage', names='Commune', template='plotly_white', hole=.3) fig.update_traces(textinfo='percent+label') st.plotly_chart(fig) def display_rse_actions_wordcloud(df): st.header("Nuage de mots Actions RSE") custom_stopwords = set(["l", "d", "d ", "des", "qui", "ainsi", "toute", "hors", "plus", "cette", "afin", "via", "d'", "sa", "dans", "ont", "avec", "aux", "ce", "chez", "ont", "cela", "la", "un", "avons", "par", "c'est", "s'est", "aussi", "leurs", "d'un", "nos", "les", "sur", "ses", "tous", "nous", "du", "notre", "de", "et", "est", "pour", "le", "une", "se", "en", "au", "à", "que", "sont", "leur", "son"]) stopwords = STOPWORDS.union(custom_stopwords) text = " ".join(action for action in df['action_rse'].dropna()) wordcloud = WordCloud(stopwords=stopwords, background_color="white", width=800, height=400).generate(text) fig, ax = plt.subplots() ax.imshow(wordcloud, interpolation='bilinear') ax.axis('off') st.pyplot(fig) def main(): data, _ = get_data() df = pd.DataFrame(data) if not df.empty: st.markdown("## OPEN DATA RSE") st.markdown("### Statistiques sur les entreprises engagées RSE") st.header("Répartition des entreprises par secteur d'activité") display_companies_by_sector(df) st.header("Distribution des tailles d'entreprises") display_company_sizes(df) st.header("Pourcentage d'entreprises par Commune") display_companies_by_commune(df) display_rse_actions_wordcloud(df) if __name__ == "__main__": main()