Spaces:
Runtime error
Runtime error
Create attentions.py
Browse files- lib/infer_pack/attentions.py +417 -0
lib/infer_pack/attentions.py
ADDED
|
@@ -0,0 +1,417 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import copy
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
from lib.infer_pack import commons
|
| 9 |
+
from lib.infer_pack import modules
|
| 10 |
+
from lib.infer_pack.modules import LayerNorm
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class Encoder(nn.Module):
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
hidden_channels,
|
| 17 |
+
filter_channels,
|
| 18 |
+
n_heads,
|
| 19 |
+
n_layers,
|
| 20 |
+
kernel_size=1,
|
| 21 |
+
p_dropout=0.0,
|
| 22 |
+
window_size=10,
|
| 23 |
+
**kwargs
|
| 24 |
+
):
|
| 25 |
+
super().__init__()
|
| 26 |
+
self.hidden_channels = hidden_channels
|
| 27 |
+
self.filter_channels = filter_channels
|
| 28 |
+
self.n_heads = n_heads
|
| 29 |
+
self.n_layers = n_layers
|
| 30 |
+
self.kernel_size = kernel_size
|
| 31 |
+
self.p_dropout = p_dropout
|
| 32 |
+
self.window_size = window_size
|
| 33 |
+
|
| 34 |
+
self.drop = nn.Dropout(p_dropout)
|
| 35 |
+
self.attn_layers = nn.ModuleList()
|
| 36 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 37 |
+
self.ffn_layers = nn.ModuleList()
|
| 38 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 39 |
+
for i in range(self.n_layers):
|
| 40 |
+
self.attn_layers.append(
|
| 41 |
+
MultiHeadAttention(
|
| 42 |
+
hidden_channels,
|
| 43 |
+
hidden_channels,
|
| 44 |
+
n_heads,
|
| 45 |
+
p_dropout=p_dropout,
|
| 46 |
+
window_size=window_size,
|
| 47 |
+
)
|
| 48 |
+
)
|
| 49 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 50 |
+
self.ffn_layers.append(
|
| 51 |
+
FFN(
|
| 52 |
+
hidden_channels,
|
| 53 |
+
hidden_channels,
|
| 54 |
+
filter_channels,
|
| 55 |
+
kernel_size,
|
| 56 |
+
p_dropout=p_dropout,
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 60 |
+
|
| 61 |
+
def forward(self, x, x_mask):
|
| 62 |
+
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 63 |
+
x = x * x_mask
|
| 64 |
+
for i in range(self.n_layers):
|
| 65 |
+
y = self.attn_layers[i](x, x, attn_mask)
|
| 66 |
+
y = self.drop(y)
|
| 67 |
+
x = self.norm_layers_1[i](x + y)
|
| 68 |
+
|
| 69 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 70 |
+
y = self.drop(y)
|
| 71 |
+
x = self.norm_layers_2[i](x + y)
|
| 72 |
+
x = x * x_mask
|
| 73 |
+
return x
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class Decoder(nn.Module):
|
| 77 |
+
def __init__(
|
| 78 |
+
self,
|
| 79 |
+
hidden_channels,
|
| 80 |
+
filter_channels,
|
| 81 |
+
n_heads,
|
| 82 |
+
n_layers,
|
| 83 |
+
kernel_size=1,
|
| 84 |
+
p_dropout=0.0,
|
| 85 |
+
proximal_bias=False,
|
| 86 |
+
proximal_init=True,
|
| 87 |
+
**kwargs
|
| 88 |
+
):
|
| 89 |
+
super().__init__()
|
| 90 |
+
self.hidden_channels = hidden_channels
|
| 91 |
+
self.filter_channels = filter_channels
|
| 92 |
+
self.n_heads = n_heads
|
| 93 |
+
self.n_layers = n_layers
|
| 94 |
+
self.kernel_size = kernel_size
|
| 95 |
+
self.p_dropout = p_dropout
|
| 96 |
+
self.proximal_bias = proximal_bias
|
| 97 |
+
self.proximal_init = proximal_init
|
| 98 |
+
|
| 99 |
+
self.drop = nn.Dropout(p_dropout)
|
| 100 |
+
self.self_attn_layers = nn.ModuleList()
|
| 101 |
+
self.norm_layers_0 = nn.ModuleList()
|
| 102 |
+
self.encdec_attn_layers = nn.ModuleList()
|
| 103 |
+
self.norm_layers_1 = nn.ModuleList()
|
| 104 |
+
self.ffn_layers = nn.ModuleList()
|
| 105 |
+
self.norm_layers_2 = nn.ModuleList()
|
| 106 |
+
for i in range(self.n_layers):
|
| 107 |
+
self.self_attn_layers.append(
|
| 108 |
+
MultiHeadAttention(
|
| 109 |
+
hidden_channels,
|
| 110 |
+
hidden_channels,
|
| 111 |
+
n_heads,
|
| 112 |
+
p_dropout=p_dropout,
|
| 113 |
+
proximal_bias=proximal_bias,
|
| 114 |
+
proximal_init=proximal_init,
|
| 115 |
+
)
|
| 116 |
+
)
|
| 117 |
+
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
| 118 |
+
self.encdec_attn_layers.append(
|
| 119 |
+
MultiHeadAttention(
|
| 120 |
+
hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout
|
| 121 |
+
)
|
| 122 |
+
)
|
| 123 |
+
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
| 124 |
+
self.ffn_layers.append(
|
| 125 |
+
FFN(
|
| 126 |
+
hidden_channels,
|
| 127 |
+
hidden_channels,
|
| 128 |
+
filter_channels,
|
| 129 |
+
kernel_size,
|
| 130 |
+
p_dropout=p_dropout,
|
| 131 |
+
causal=True,
|
| 132 |
+
)
|
| 133 |
+
)
|
| 134 |
+
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
| 135 |
+
|
| 136 |
+
def forward(self, x, x_mask, h, h_mask):
|
| 137 |
+
"""
|
| 138 |
+
x: decoder input
|
| 139 |
+
h: encoder output
|
| 140 |
+
"""
|
| 141 |
+
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(
|
| 142 |
+
device=x.device, dtype=x.dtype
|
| 143 |
+
)
|
| 144 |
+
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
| 145 |
+
x = x * x_mask
|
| 146 |
+
for i in range(self.n_layers):
|
| 147 |
+
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
| 148 |
+
y = self.drop(y)
|
| 149 |
+
x = self.norm_layers_0[i](x + y)
|
| 150 |
+
|
| 151 |
+
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
| 152 |
+
y = self.drop(y)
|
| 153 |
+
x = self.norm_layers_1[i](x + y)
|
| 154 |
+
|
| 155 |
+
y = self.ffn_layers[i](x, x_mask)
|
| 156 |
+
y = self.drop(y)
|
| 157 |
+
x = self.norm_layers_2[i](x + y)
|
| 158 |
+
x = x * x_mask
|
| 159 |
+
return x
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class MultiHeadAttention(nn.Module):
|
| 163 |
+
def __init__(
|
| 164 |
+
self,
|
| 165 |
+
channels,
|
| 166 |
+
out_channels,
|
| 167 |
+
n_heads,
|
| 168 |
+
p_dropout=0.0,
|
| 169 |
+
window_size=None,
|
| 170 |
+
heads_share=True,
|
| 171 |
+
block_length=None,
|
| 172 |
+
proximal_bias=False,
|
| 173 |
+
proximal_init=False,
|
| 174 |
+
):
|
| 175 |
+
super().__init__()
|
| 176 |
+
assert channels % n_heads == 0
|
| 177 |
+
|
| 178 |
+
self.channels = channels
|
| 179 |
+
self.out_channels = out_channels
|
| 180 |
+
self.n_heads = n_heads
|
| 181 |
+
self.p_dropout = p_dropout
|
| 182 |
+
self.window_size = window_size
|
| 183 |
+
self.heads_share = heads_share
|
| 184 |
+
self.block_length = block_length
|
| 185 |
+
self.proximal_bias = proximal_bias
|
| 186 |
+
self.proximal_init = proximal_init
|
| 187 |
+
self.attn = None
|
| 188 |
+
|
| 189 |
+
self.k_channels = channels // n_heads
|
| 190 |
+
self.conv_q = nn.Conv1d(channels, channels, 1)
|
| 191 |
+
self.conv_k = nn.Conv1d(channels, channels, 1)
|
| 192 |
+
self.conv_v = nn.Conv1d(channels, channels, 1)
|
| 193 |
+
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
| 194 |
+
self.drop = nn.Dropout(p_dropout)
|
| 195 |
+
|
| 196 |
+
if window_size is not None:
|
| 197 |
+
n_heads_rel = 1 if heads_share else n_heads
|
| 198 |
+
rel_stddev = self.k_channels**-0.5
|
| 199 |
+
self.emb_rel_k = nn.Parameter(
|
| 200 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 201 |
+
* rel_stddev
|
| 202 |
+
)
|
| 203 |
+
self.emb_rel_v = nn.Parameter(
|
| 204 |
+
torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels)
|
| 205 |
+
* rel_stddev
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
nn.init.xavier_uniform_(self.conv_q.weight)
|
| 209 |
+
nn.init.xavier_uniform_(self.conv_k.weight)
|
| 210 |
+
nn.init.xavier_uniform_(self.conv_v.weight)
|
| 211 |
+
if proximal_init:
|
| 212 |
+
with torch.no_grad():
|
| 213 |
+
self.conv_k.weight.copy_(self.conv_q.weight)
|
| 214 |
+
self.conv_k.bias.copy_(self.conv_q.bias)
|
| 215 |
+
|
| 216 |
+
def forward(self, x, c, attn_mask=None):
|
| 217 |
+
q = self.conv_q(x)
|
| 218 |
+
k = self.conv_k(c)
|
| 219 |
+
v = self.conv_v(c)
|
| 220 |
+
|
| 221 |
+
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
| 222 |
+
|
| 223 |
+
x = self.conv_o(x)
|
| 224 |
+
return x
|
| 225 |
+
|
| 226 |
+
def attention(self, query, key, value, mask=None):
|
| 227 |
+
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
| 228 |
+
b, d, t_s, t_t = (*key.size(), query.size(2))
|
| 229 |
+
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
| 230 |
+
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 231 |
+
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
| 232 |
+
|
| 233 |
+
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
| 234 |
+
if self.window_size is not None:
|
| 235 |
+
assert (
|
| 236 |
+
t_s == t_t
|
| 237 |
+
), "Relative attention is only available for self-attention."
|
| 238 |
+
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
| 239 |
+
rel_logits = self._matmul_with_relative_keys(
|
| 240 |
+
query / math.sqrt(self.k_channels), key_relative_embeddings
|
| 241 |
+
)
|
| 242 |
+
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
| 243 |
+
scores = scores + scores_local
|
| 244 |
+
if self.proximal_bias:
|
| 245 |
+
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
| 246 |
+
scores = scores + self._attention_bias_proximal(t_s).to(
|
| 247 |
+
device=scores.device, dtype=scores.dtype
|
| 248 |
+
)
|
| 249 |
+
if mask is not None:
|
| 250 |
+
scores = scores.masked_fill(mask == 0, -1e4)
|
| 251 |
+
if self.block_length is not None:
|
| 252 |
+
assert (
|
| 253 |
+
t_s == t_t
|
| 254 |
+
), "Local attention is only available for self-attention."
|
| 255 |
+
block_mask = (
|
| 256 |
+
torch.ones_like(scores)
|
| 257 |
+
.triu(-self.block_length)
|
| 258 |
+
.tril(self.block_length)
|
| 259 |
+
)
|
| 260 |
+
scores = scores.masked_fill(block_mask == 0, -1e4)
|
| 261 |
+
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
| 262 |
+
p_attn = self.drop(p_attn)
|
| 263 |
+
output = torch.matmul(p_attn, value)
|
| 264 |
+
if self.window_size is not None:
|
| 265 |
+
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
| 266 |
+
value_relative_embeddings = self._get_relative_embeddings(
|
| 267 |
+
self.emb_rel_v, t_s
|
| 268 |
+
)
|
| 269 |
+
output = output + self._matmul_with_relative_values(
|
| 270 |
+
relative_weights, value_relative_embeddings
|
| 271 |
+
)
|
| 272 |
+
output = (
|
| 273 |
+
output.transpose(2, 3).contiguous().view(b, d, t_t)
|
| 274 |
+
) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
| 275 |
+
return output, p_attn
|
| 276 |
+
|
| 277 |
+
def _matmul_with_relative_values(self, x, y):
|
| 278 |
+
"""
|
| 279 |
+
x: [b, h, l, m]
|
| 280 |
+
y: [h or 1, m, d]
|
| 281 |
+
ret: [b, h, l, d]
|
| 282 |
+
"""
|
| 283 |
+
ret = torch.matmul(x, y.unsqueeze(0))
|
| 284 |
+
return ret
|
| 285 |
+
|
| 286 |
+
def _matmul_with_relative_keys(self, x, y):
|
| 287 |
+
"""
|
| 288 |
+
x: [b, h, l, d]
|
| 289 |
+
y: [h or 1, m, d]
|
| 290 |
+
ret: [b, h, l, m]
|
| 291 |
+
"""
|
| 292 |
+
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
| 293 |
+
return ret
|
| 294 |
+
|
| 295 |
+
def _get_relative_embeddings(self, relative_embeddings, length):
|
| 296 |
+
max_relative_position = 2 * self.window_size + 1
|
| 297 |
+
# Pad first before slice to avoid using cond ops.
|
| 298 |
+
pad_length = max(length - (self.window_size + 1), 0)
|
| 299 |
+
slice_start_position = max((self.window_size + 1) - length, 0)
|
| 300 |
+
slice_end_position = slice_start_position + 2 * length - 1
|
| 301 |
+
if pad_length > 0:
|
| 302 |
+
padded_relative_embeddings = F.pad(
|
| 303 |
+
relative_embeddings,
|
| 304 |
+
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
| 305 |
+
)
|
| 306 |
+
else:
|
| 307 |
+
padded_relative_embeddings = relative_embeddings
|
| 308 |
+
used_relative_embeddings = padded_relative_embeddings[
|
| 309 |
+
:, slice_start_position:slice_end_position
|
| 310 |
+
]
|
| 311 |
+
return used_relative_embeddings
|
| 312 |
+
|
| 313 |
+
def _relative_position_to_absolute_position(self, x):
|
| 314 |
+
"""
|
| 315 |
+
x: [b, h, l, 2*l-1]
|
| 316 |
+
ret: [b, h, l, l]
|
| 317 |
+
"""
|
| 318 |
+
batch, heads, length, _ = x.size()
|
| 319 |
+
# Concat columns of pad to shift from relative to absolute indexing.
|
| 320 |
+
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
| 321 |
+
|
| 322 |
+
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
| 323 |
+
x_flat = x.view([batch, heads, length * 2 * length])
|
| 324 |
+
x_flat = F.pad(
|
| 325 |
+
x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
# Reshape and slice out the padded elements.
|
| 329 |
+
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[
|
| 330 |
+
:, :, :length, length - 1 :
|
| 331 |
+
]
|
| 332 |
+
return x_final
|
| 333 |
+
|
| 334 |
+
def _absolute_position_to_relative_position(self, x):
|
| 335 |
+
"""
|
| 336 |
+
x: [b, h, l, l]
|
| 337 |
+
ret: [b, h, l, 2*l-1]
|
| 338 |
+
"""
|
| 339 |
+
batch, heads, length, _ = x.size()
|
| 340 |
+
# padd along column
|
| 341 |
+
x = F.pad(
|
| 342 |
+
x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])
|
| 343 |
+
)
|
| 344 |
+
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
| 345 |
+
# add 0's in the beginning that will skew the elements after reshape
|
| 346 |
+
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
| 347 |
+
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
| 348 |
+
return x_final
|
| 349 |
+
|
| 350 |
+
def _attention_bias_proximal(self, length):
|
| 351 |
+
"""Bias for self-attention to encourage attention to close positions.
|
| 352 |
+
Args:
|
| 353 |
+
length: an integer scalar.
|
| 354 |
+
Returns:
|
| 355 |
+
a Tensor with shape [1, 1, length, length]
|
| 356 |
+
"""
|
| 357 |
+
r = torch.arange(length, dtype=torch.float32)
|
| 358 |
+
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
| 359 |
+
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
class FFN(nn.Module):
|
| 363 |
+
def __init__(
|
| 364 |
+
self,
|
| 365 |
+
in_channels,
|
| 366 |
+
out_channels,
|
| 367 |
+
filter_channels,
|
| 368 |
+
kernel_size,
|
| 369 |
+
p_dropout=0.0,
|
| 370 |
+
activation=None,
|
| 371 |
+
causal=False,
|
| 372 |
+
):
|
| 373 |
+
super().__init__()
|
| 374 |
+
self.in_channels = in_channels
|
| 375 |
+
self.out_channels = out_channels
|
| 376 |
+
self.filter_channels = filter_channels
|
| 377 |
+
self.kernel_size = kernel_size
|
| 378 |
+
self.p_dropout = p_dropout
|
| 379 |
+
self.activation = activation
|
| 380 |
+
self.causal = causal
|
| 381 |
+
|
| 382 |
+
if causal:
|
| 383 |
+
self.padding = self._causal_padding
|
| 384 |
+
else:
|
| 385 |
+
self.padding = self._same_padding
|
| 386 |
+
|
| 387 |
+
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
| 388 |
+
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
| 389 |
+
self.drop = nn.Dropout(p_dropout)
|
| 390 |
+
|
| 391 |
+
def forward(self, x, x_mask):
|
| 392 |
+
x = self.conv_1(self.padding(x * x_mask))
|
| 393 |
+
if self.activation == "gelu":
|
| 394 |
+
x = x * torch.sigmoid(1.702 * x)
|
| 395 |
+
else:
|
| 396 |
+
x = torch.relu(x)
|
| 397 |
+
x = self.drop(x)
|
| 398 |
+
x = self.conv_2(self.padding(x * x_mask))
|
| 399 |
+
return x * x_mask
|
| 400 |
+
|
| 401 |
+
def _causal_padding(self, x):
|
| 402 |
+
if self.kernel_size == 1:
|
| 403 |
+
return x
|
| 404 |
+
pad_l = self.kernel_size - 1
|
| 405 |
+
pad_r = 0
|
| 406 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 407 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 408 |
+
return x
|
| 409 |
+
|
| 410 |
+
def _same_padding(self, x):
|
| 411 |
+
if self.kernel_size == 1:
|
| 412 |
+
return x
|
| 413 |
+
pad_l = (self.kernel_size - 1) // 2
|
| 414 |
+
pad_r = self.kernel_size // 2
|
| 415 |
+
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
| 416 |
+
x = F.pad(x, commons.convert_pad_shape(padding))
|
| 417 |
+
return x
|