File size: 24,099 Bytes
ac500fb
 
 
 
 
 
99732d3
ac500fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70c8648
 
ac500fb
 
 
 
 
99732d3
d961598
 
ebb9c13
99732d3
ac500fb
 
 
 
 
 
99732d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebb9c13
99732d3
 
 
 
ac500fb
 
99732d3
ac500fb
99732d3
 
 
 
5ace481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99732d3
5ace481
99732d3
 
 
 
 
 
 
 
 
 
 
 
 
 
ac500fb
 
99732d3
ac500fb
99732d3
 
 
ac500fb
 
 
99732d3
ac500fb
 
 
 
 
 
 
 
 
 
 
f58ec83
ac500fb
 
f58ec83
ac500fb
f58ec83
ac500fb
 
f58ec83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac500fb
d2992da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ed6f5
 
7f5d2cc
 
 
31ed6f5
d2992da
ac500fb
d2992da
7f5d2cc
ac500fb
 
 
b303276
ac500fb
 
f58ec83
 
ac500fb
 
 
 
 
5098c7c
91ff1cc
5098c7c
 
 
ebb9c13
 
 
 
ac500fb
 
 
 
 
90b6b3b
 
 
 
b303276
e2a36f9
ac500fb
038e993
 
 
 
e2a36f9
 
038e993
 
90b6b3b
e2a36f9
90b6b3b
e2a36f9
90b6b3b
 
 
 
 
 
 
 
 
 
 
ac500fb
 
 
038e993
ac500fb
 
90b6b3b
 
8f26ebb
90b6b3b
8f26ebb
90b6b3b
8f26ebb
 
90b6b3b
 
 
 
 
 
8f26ebb
90b6b3b
 
8f26ebb
 
90b6b3b
 
 
 
8f26ebb
 
90b6b3b
 
 
 
8f26ebb
90b6b3b
 
 
 
 
 
 
8f26ebb
90b6b3b
 
 
 
 
 
 
 
 
 
 
8f26ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b6b3b
85bef7d
ac500fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90b6b3b
ac500fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import numpy as np
import os

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    TITLE,
    Tasks
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision,
    AREA_DEFINITIONS,
    AREA_AVG_COLUMN_MAP,
    PLUE_GROUP_AREAS
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

# --- TESTE: Carregar dados locais --- 
TEST_DATA_PATH = "output/leaderboard_results_1.csv"
#TEST_DATA_PATH = "output/leaderboard_data_20250413_002339.csv" # Ajuste o caminho se necessário
LOAD_TEST_DATA = True # Defina como False para usar dados do Hub
# -------

def restart_space():
    API.restart_space(repo_id=REPO_ID)

### Space initialisation

if not LOAD_TEST_DATA:
    try:
        print(EVAL_REQUESTS_PATH)
        snapshot_download(
            repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
        )
    except Exception as e: # Adicionar captura de exceção
        print(f"Erro ao baixar EVAL_REQUESTS: {e}")
        # Considerar restart_space() aqui também, dependendo da severidade
    try:
        print(EVAL_RESULTS_PATH)
        snapshot_download(
            repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
        )
    except Exception as e: # Adicionar captura de exceção
        print(f"Erro ao baixar EVAL_RESULTS: {e}")
        # Considerar restart_space() aqui também
else:
    print(f"Modo de teste: Carregando dados locais de {TEST_DATA_PATH}")
    EVAL_RESULTS_PATH = None # Não precisamos do caminho do Hub para resultados
    EVAL_REQUESTS_PATH = "data/eval_requests" # Manter ou ajustar se a fila ainda for lida do Hub
    # Certifique-se de que o diretório da fila de requests existe se for usado
    os.makedirs(EVAL_REQUESTS_PATH, exist_ok=True)


# Obter todas as colunas definidas
ALL_COLS = [c.name for c in fields(AutoEvalColumn)]

# Obter o leaderboard completo com as médias calculadas
try:
    initial_df_for_test = None
    if LOAD_TEST_DATA:
        try:
            initial_df_for_test = pd.read_csv(TEST_DATA_PATH)
            # Renomear colunas do CSV para corresponder às chaves internas
            rename_map = {}
            # Mapear tasks (Nome no CSV -> Nome interno da Enum Task)
            for task in Tasks:
                rename_map[task.value.col_name] = task.name # Ex: {"Revalida": "REVALIDA"}
            
            # Mapear outras colunas (Nome no CSV -> Nome interno de AutoEvalColumn)
            # Verificar se a coluna existe no CSV antes de adicionar ao mapa
            csv_columns = initial_df_for_test.columns
            
            if "T" in csv_columns: rename_map["T"] = AutoEvalColumn.model_type_symbol.name
            if "Modelo" in csv_columns: rename_map["Modelo"] = AutoEvalColumn.model.name
            if "Tipo" in csv_columns: rename_map["Tipo"] = AutoEvalColumn.model_type.name
            if "Arquitetura" in csv_columns: rename_map["Arquitetura"] = AutoEvalColumn.architecture.name
            if "Tipo de Peso" in csv_columns: rename_map["Tipo de Peso"] = AutoEvalColumn.weight_type.name
            if "Precisão" in csv_columns: rename_map["Precisão"] = AutoEvalColumn.precision.name
            if "Licença" in csv_columns: rename_map["Licença"] = AutoEvalColumn.license.name
            if "#Params (B)" in csv_columns: rename_map["#Params (B)"] = AutoEvalColumn.params.name
            if "Hub Likes" in csv_columns: rename_map["Hub Likes"] = AutoEvalColumn.likes.name
            if "Disponível no hub" in csv_columns: rename_map["Disponível no hub"] = AutoEvalColumn.still_on_hub.name
            if "SHA do modelo" in csv_columns: rename_map["SHA do modelo"] = AutoEvalColumn.revision.name
            # Mapear colunas de médias (já devem estar com nome correto se calculadas, mas por segurança)
            if "Média Geral" in csv_columns: rename_map["Média Geral"] = AutoEvalColumn.average.name
            if "Área Médica" in csv_columns: rename_map["Área Médica"] = AutoEvalColumn.area_medica_avg.name
            if "Área do Direito" in csv_columns: rename_map["Área do Direito"] = AutoEvalColumn.area_direito_avg.name
            if "Provas Militares" in csv_columns: rename_map["Provas Militares"] = AutoEvalColumn.provas_militares_avg.name
            if "Computação" in csv_columns: rename_map["Computação"] = AutoEvalColumn.computacao_avg.name
            if "Discurso de Ódio" in csv_columns: rename_map["Discurso de Ódio"] = AutoEvalColumn.discurso_odio_avg.name
            if "Economia e Contabilidade" in csv_columns: rename_map["Economia e Contabilidade"] = AutoEvalColumn.economia_contabilidade_avg.name
            if "Semântica e Inferência" in csv_columns: rename_map["Semântica e Inferência"] = AutoEvalColumn.semantica_inferencia_avg.name
            if "Multidisciplinar" in csv_columns: rename_map["Multidisciplinar"] = AutoEvalColumn.multidisciplinar_avg.name

            # Aplicar o rename
            initial_df_for_test.rename(columns=rename_map, inplace=True)
            print(f"Colunas após renomeação: {initial_df_for_test.columns.tolist()}") # Log para verificar
            print("DataFrame de teste carregado e colunas renomeadas.")
        except FileNotFoundError:
            print(f"Erro: Arquivo de teste não encontrado em {TEST_DATA_PATH}")
            initial_df_for_test = pd.DataFrame()
        except Exception as e:
            print(f"Erro ao carregar ou processar o arquivo de teste: {e}")
            initial_df_for_test = pd.DataFrame()
            
    LEADERBOARD_DF = get_leaderboard_df(
        results_path=EVAL_RESULTS_PATH if not LOAD_TEST_DATA else None, 
        requests_path=EVAL_REQUESTS_PATH if not LOAD_TEST_DATA else None, 
        cols=ALL_COLS, 
        initial_df=initial_df_for_test
    )
except Exception as e:
    print(f"Erro ao gerar o DataFrame do Leaderboard: {e}")
    LEADERBOARD_DF = pd.DataFrame() # Criar DataFrame vazio em caso de erro

# Obter DataFrames da fila de avaliação (pode precisar ser ajustado se LOAD_TEST_DATA=True)
# Se a fila também deve ser mockada/lida localmente, ajuste aqui
(   
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) 


def create_leaderboard_component(dataframe, displayed_cols, hidden_cols=None, cant_deselect_cols=None, title=None):
    if dataframe is None or dataframe.empty:
        return gr.Markdown(f"## {title or ''}\nNão há dados para exibir.")
    
    if hidden_cols is None:
        hidden_cols = []
    if cant_deselect_cols is None:
        cant_deselect_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]

    # Filtrar dataframe para conter apenas as colunas a serem exibidas (ou ocultas/não deselecionáveis)
    all_required_cols = set(displayed_cols) | set(hidden_cols) | set(cant_deselect_cols) | {AutoEvalColumn.model_type.name, AutoEvalColumn.precision.name, AutoEvalColumn.params.name, AutoEvalColumn.still_on_hub.name}
    available_cols = [col for col in all_required_cols if col in dataframe.columns]
    filtered_df = dataframe[available_cols].copy() # Usar cópia para evitar SettingWithCopyWarning

    # Garantir que as colunas 'always visible' estejam presentes
    for col in cant_deselect_cols:
        if col not in filtered_df.columns:
            filtered_df[col] = np.nan # Ou algum valor padrão apropriado

    # Construir lista de filtros, incluindo None para colunas ausentes
    raw_filter_columns=[
        ColumnFilter(AutoEvalColumn.model_type.name, type="checkboxgroup", label="Tipos de Modelo") if AutoEvalColumn.model_type.name in filtered_df.columns else None,
        ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precisão") if AutoEvalColumn.precision.name in filtered_df.columns else None,
        ColumnFilter(
            AutoEvalColumn.params.name,
            type="slider",
            min=0.01,
            max=max(150, filtered_df[AutoEvalColumn.params.name].max(skipna=True) if AutoEvalColumn.params.name in filtered_df.columns and not filtered_df[AutoEvalColumn.params.name].dropna().empty else 150), # Ajustar max dinamicamente e ignorar NaN
            label="Selecionar número de parâmetros (B)",
        ) if AutoEvalColumn.params.name in filtered_df.columns else None,
        ColumnFilter(
            AutoEvalColumn.still_on_hub.name, type="boolean", label="Deletado/incompleto", default=True
        ) if AutoEvalColumn.still_on_hub.name in filtered_df.columns else None,
    ]
    
    # Filtrar Nones da lista de filtros
    final_filter_columns = [f for f in raw_filter_columns if f is not None]

    # --- Reordenar Colunas --- 
    current_cols = filtered_df.columns.tolist()
    
    # Definir as colunas que devem vir primeiro
    first_cols_desired = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name]
    # Garantir que elas existem no dataframe atual
    first_cols_actual = [c for c in first_cols_desired if c in current_cols]
    
    # Obter as outras colunas
    other_cols = [c for c in current_cols if c not in first_cols_actual]
    
    # Priorizar as colunas que deveriam ser exibidas por padrão (exceto as primeiras)
    other_displayed_cols = [c for c in displayed_cols if c in other_cols]
    
    # Obter as colunas restantes (ocultas por padrão ou não especificadas em displayed_cols) e ordená-las
    remaining_cols = sorted([c for c in other_cols if c not in other_displayed_cols])
    
    # Montar a ordem final
    final_order = first_cols_actual + other_displayed_cols + remaining_cols
    
    # Aplicar a nova ordem
    filtered_df = filtered_df[final_order]
    # --- Fim Reordenar Colunas ---
    
    # --- INÍCIO DA MODIFICAÇÃO ---
    # print(f"--- Info for DataFrame passed to Leaderboard ({title}) ---")
    # filtered_df.info()
    # print("----------------------------------------------------------")
    # --- FIM DA MODIFICAÇÃO ---

    return Leaderboard(
        value=filtered_df, # Passar o DataFrame reordenado
        datatype=[c.type for c in fields(AutoEvalColumn) if c.name in filtered_df.columns],
        select_columns=SelectColumns(
            default_selection=displayed_cols,
            cant_deselect=cant_deselect_cols,
            label="Selecionar Benchmarks a Serem Exibidos:",
        ),
        search_columns=[AutoEvalColumn.model.name, AutoEvalColumn.license.name] if AutoEvalColumn.license.name in filtered_df.columns else [AutoEvalColumn.model.name],
        hide_columns=[c for c in hidden_cols if c in filtered_df.columns], # Ocultar apenas colunas existentes
        filter_columns=final_filter_columns, # Usar a lista filtrada
        bool_checkboxgroup_label="Ocultar modelos",
        interactive=False,
    )


# --- Definição do Grupo PLUE ---
PLUE_GENERAL_VIEW_NAME = "Conhecimentos Gerais para Língua Portuguesa"
# -------


# Definição do tema verde
green_theme = gr.themes.Base(primary_hue=gr.themes.colors.green, secondary_hue=gr.themes.colors.blue, neutral_hue=gr.themes.colors.slate)

demo = gr.Blocks(css=custom_css, theme=green_theme)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # --- Definir Ordem das Abas --- 
        tab_index = 0

        # 1. Benchmark Geral
        with gr.TabItem("📊 Resume", id=tab_index):
            # Colunas a exibir: T, Modelo, Média Geral, PLUE, Energy, Reasoning
            general_cols_to_display = [
                AutoEvalColumn.model_type_symbol.name, # T
                AutoEvalColumn.model.name, # Modelo
                AutoEvalColumn.average.name, # Média Geral
                AutoEvalColumn.plue_avg.name, # Média PLUE
                AutoEvalColumn.energy_avg.name, # Média Energy (Exibir por padrão)
                AutoEvalColumn.reasoning_avg.name, # Média Reasoning (Exibir por padrão)
            ] 
            general_cols_to_display = [col for col in general_cols_to_display if col in LEADERBOARD_DF.columns]
            
            # Colunas a ocultar: Tasks + Médias Individuais SOMENTE do grupo PLUE + detalhes
            general_hidden_cols = [task.name for task in Tasks] + \
                                  [AREA_AVG_COLUMN_MAP[area] for area in PLUE_GROUP_AREAS if area in AREA_AVG_COLUMN_MAP] + \
                                  [
                                      AutoEvalColumn.model_type.name,
                                      AutoEvalColumn.architecture.name,
                                      AutoEvalColumn.weight_type.name,
                                      AutoEvalColumn.precision.name,
                                      AutoEvalColumn.license.name,
                                      AutoEvalColumn.params.name,
                                      AutoEvalColumn.likes.name,
                                      AutoEvalColumn.still_on_hub.name,
                                      AutoEvalColumn.revision.name
                                  ]
            create_leaderboard_component(
                LEADERBOARD_DF,
                displayed_cols=general_cols_to_display,
                hidden_cols=[col for col in general_hidden_cols if col in LEADERBOARD_DF.columns],
                title="Benchmark Geral"
            )
        tab_index += 1

        # 2. PLUE (Agora apenas com as áreas originais + 3 adicionadas)
        with gr.TabItem("📚 PLUE", id=tab_index) as plue_tab:
            # --- Lógica interna da aba PLUE (ajustada) ---
            gr.Markdown("## Selecione a visualização PLUE:") 
            # RECALCULAR choices e options com base na PLUE_GROUP_AREAS atualizada (sem Energy/Reasoning)
            all_plue_options = [PLUE_GENERAL_VIEW_NAME] + sorted(PLUE_GROUP_AREAS) 
            plue_dropdown = gr.Dropdown(
                choices=all_plue_options, 
                label="Visualização PLUE", 
                value=PLUE_GENERAL_VIEW_NAME 
            )
            
            # Função auxiliar (lógica interna não muda, mas opera sobre PLUE_GROUP_AREAS atualizada)
            def get_plue_leaderboard_config(selected_option):
                if selected_option == PLUE_GENERAL_VIEW_NAME:
                    displayed_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name,] + [AREA_AVG_COLUMN_MAP[area] for area in PLUE_GROUP_AREAS if area in AREA_AVG_COLUMN_MAP]
                    hidden_cols = [task.name for task in Tasks] + [avg_col for area, avg_col in AREA_AVG_COLUMN_MAP.items() if area not in PLUE_GROUP_AREAS] + [AutoEvalColumn.average.name] + [AutoEvalColumn.plue_avg.name, AutoEvalColumn.model_type.name, AutoEvalColumn.architecture.name, AutoEvalColumn.weight_type.name, AutoEvalColumn.precision.name, AutoEvalColumn.license.name, AutoEvalColumn.params.name, AutoEvalColumn.likes.name, AutoEvalColumn.still_on_hub.name, AutoEvalColumn.revision.name]
                    title = PLUE_GENERAL_VIEW_NAME
                else:
                    selected_area = selected_option
                    tasks_in_area = AREA_DEFINITIONS[selected_area]
                    displayed_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name,] + [task.name for task in tasks_in_area]
                    hidden_cols = list(AREA_AVG_COLUMN_MAP.values()) + [task.name for task in Tasks if task not in tasks_in_area] + [AutoEvalColumn.plue_avg.name, AutoEvalColumn.average.name, AutoEvalColumn.model_type.name, AutoEvalColumn.architecture.name, AutoEvalColumn.weight_type.name, AutoEvalColumn.precision.name, AutoEvalColumn.license.name, AutoEvalColumn.params.name, AutoEvalColumn.likes.name, AutoEvalColumn.still_on_hub.name, AutoEvalColumn.revision.name] 
                    title = selected_area
                final_hidden_cols = [col for col in hidden_cols if col in LEADERBOARD_DF.columns]
                return displayed_cols, final_hidden_cols, title

            # Pré-renderização (ATUALIZAR loop e containers com novas all_plue_options)
            plue_containers = {} 
            for option in all_plue_options:
                displayed_cols, hidden_cols, title = get_plue_leaderboard_config(option)
                is_visible = (option == PLUE_GENERAL_VIEW_NAME)
                with gr.Group(visible=is_visible) as plue_containers[option]:
                     create_leaderboard_component(LEADERBOARD_DF, displayed_cols=displayed_cols, hidden_cols=hidden_cols, title=title)
            
            # Função de callback (ATUALIZAR loop com novas all_plue_options)
            def switch_plue_view(selected_option):
                update_list = []
                for option in all_plue_options:
                    update_list.append(gr.update(visible=(option == selected_option)))
                return update_list
            
            # Evento change (ATUALIZAR outputs com novas all_plue_options)
            plue_dropdown.change(fn=switch_plue_view, inputs=[plue_dropdown], outputs=[plue_containers[option] for option in all_plue_options]) 
            # --- Fim Lógica PLUE ---
        tab_index += 1

        # 3. Energy 
        with gr.TabItem("⚡️ Energy", id=tab_index):
             # Exibir leaderboard com dados de Energy
             energy_tasks = AREA_DEFINITIONS.get("Energy", [])
             energy_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + [t.name for t in energy_tasks]
             energy_hidden = [t.name for t in Tasks if t not in energy_tasks] + \
                             list(AREA_AVG_COLUMN_MAP.values()) + \
                             [AutoEvalColumn.plue_avg.name, AutoEvalColumn.average.name] + \
                             [c.name for c in fields(AutoEvalColumn) if c.name not in energy_cols and c.name != AutoEvalColumn.model_type_symbol.name and c.name != AutoEvalColumn.model.name ] # Detalhes
             create_leaderboard_component(LEADERBOARD_DF, displayed_cols=energy_cols, hidden_cols=[c for c in energy_hidden if c in LEADERBOARD_DF.columns], title="Energy") 
        tab_index += 1

        # 4. Reasoning
        with gr.TabItem("🤔 Reasoning", id=tab_index):
             # Exibir leaderboard com dados de Reasoning
             reasoning_tasks = AREA_DEFINITIONS.get("Reasoning", [])
             reasoning_cols = [AutoEvalColumn.model_type_symbol.name, AutoEvalColumn.model.name] + [t.name for t in reasoning_tasks]
             reasoning_hidden = [t.name for t in Tasks if t not in reasoning_tasks] + \
                                list(AREA_AVG_COLUMN_MAP.values()) + \
                                [AutoEvalColumn.plue_avg.name, AutoEvalColumn.average.name] + \
                                [c.name for c in fields(AutoEvalColumn) if c.name not in reasoning_cols and c.name != AutoEvalColumn.model_type_symbol.name and c.name != AutoEvalColumn.model.name ] # Detalhes
             create_leaderboard_component(LEADERBOARD_DF, displayed_cols=reasoning_cols, hidden_cols=[c for c in reasoning_hidden if c in LEADERBOARD_DF.columns], title="Reasoning") 
        tab_index += 1

        # 5. Submit
        with gr.TabItem("📤 Submit!", id=tab_index):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"✅ Avaliações Concluídas ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"🔄 Fila de Avaliação em Execução ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

                    with gr.Accordion(
                        f"⏳ Fila de Avaliação Pendente ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
            with gr.Row():
                gr.Markdown("# ✉️✨ Submeta seu modelo aqui!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Nome do Modelo")
                    revision_name_textbox = gr.Textbox(label="Commit da Revisão", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Tipo do Modelo",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precisão",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Tipo dos Pesos",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Modelo Base (para pesos delta ou adapter)")

            submit_button = gr.Button("Submeter Avaliação")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    with gr.Row():
        with gr.Accordion("📙 Citação", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()