Spaces:
Running
Running
| import json | |
| import os | |
| import numpy as np | |
| import pandas as pd | |
| from src.display.formatting import has_no_nan_values, make_clickable_model | |
| from src.display.utils import AutoEvalColumn, EvalQueueColumn, AREA_DEFINITIONS, AREA_AVG_COLUMN_MAP, fields, PLUE_GROUP_AREAS | |
| from src.leaderboard.read_evals import get_raw_eval_results | |
| from src.about import Tasks | |
| def get_leaderboard_df(results_path: str = None, requests_path: str = None, cols: list = None, initial_df: pd.DataFrame = None) -> pd.DataFrame: | |
| """Creates a dataframe from all the individual experiment results or uses a provided initial DataFrame.""" | |
| if initial_df is not None: | |
| df = initial_df.copy() # Use a cópia do DataFrame inicial | |
| print("Usando DataFrame inicial fornecido.") | |
| elif results_path and requests_path: | |
| print(f"Lendo resultados de: {results_path}") | |
| raw_data = get_raw_eval_results(results_path, requests_path) | |
| all_data_json = [v.to_dict() for v in raw_data] | |
| df = pd.DataFrame.from_records(all_data_json) | |
| else: | |
| print("Erro: Nenhum DataFrame inicial nem caminhos de resultados fornecidos.") | |
| return pd.DataFrame() # Retorna DataFrame vazio se não houver dados | |
| # Garantir que colunas de tasks existem antes de calcular médias | |
| # (Opcional: Adicionar lógica para lidar com DFs que já têm médias calculadas) | |
| tasks_in_df = [task.name for task in Tasks if task.name in df.columns] | |
| print(f"Tasks encontrados no DataFrame: {tasks_in_df}") | |
| # Calcular médias por área | |
| for area_name, tasks_in_area in AREA_DEFINITIONS.items(): | |
| # Usar task.name que é a chave interna/coluna no df | |
| area_cols = [task.name for task in tasks_in_area if task.name in df.columns] | |
| avg_col_name = AREA_AVG_COLUMN_MAP[area_name] | |
| if area_cols: | |
| # Lidar com possíveis NaNs nas colunas antes de calcular a média | |
| df[avg_col_name] = df[area_cols].mean(axis=1, skipna=True) | |
| print(f"Calculada média para {area_name} usando colunas: {area_cols}") | |
| else: | |
| df[avg_col_name] = np.nan | |
| print(f"Nenhuma coluna encontrada para {area_name}, definindo média como NaN.") | |
| # Calcular Média PLUE | |
| plue_avg_cols_to_consider = [ | |
| AREA_AVG_COLUMN_MAP[area] | |
| for area in PLUE_GROUP_AREAS | |
| if area in AREA_AVG_COLUMN_MAP and AREA_AVG_COLUMN_MAP[area] in df.columns | |
| ] | |
| if plue_avg_cols_to_consider: | |
| df[AutoEvalColumn.plue_avg.name] = df[plue_avg_cols_to_consider].mean(axis=1, skipna=True) | |
| print(f"Calculada Média PLUE usando colunas: {plue_avg_cols_to_consider}") | |
| else: | |
| df[AutoEvalColumn.plue_avg.name] = np.nan | |
| print("Nenhuma coluna de média de área PLUE encontrada, definindo Média PLUE como NaN.") | |
| # Calcular Média Geral (baseada nas médias de TODAS as áreas) | |
| avg_area_cols = [col for col in AREA_AVG_COLUMN_MAP.values() if col in df.columns] | |
| if avg_area_cols: | |
| df[AutoEvalColumn.average.name] = df[avg_area_cols].mean(axis=1, skipna=True) | |
| print(f"Calculada Média Geral usando colunas: {avg_area_cols}") | |
| else: | |
| df[AutoEvalColumn.average.name] = np.nan | |
| print("Nenhuma coluna de média de área encontrada, definindo Média Geral como NaN.") | |
| # Ordenar pela Média Geral | |
| if AutoEvalColumn.average.name in df.columns: | |
| df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) | |
| # Apenas arredondar os valores numéricos existentes | |
| df = df.round(decimals=2) | |
| print(f"Colunas retornadas por get_leaderboard_df: {df.columns.tolist()}") # Adicionar log | |
| return df | |
| def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: | |
| """Creates the different dataframes for the evaluation queues requestes""" | |
| entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] | |
| all_evals = [] | |
| for entry in entries: | |
| if ".json" in entry: | |
| file_path = os.path.join(save_path, entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| elif ".md" not in entry: | |
| # this is a folder | |
| sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] | |
| for sub_entry in sub_entries: | |
| file_path = os.path.join(save_path, entry, sub_entry) | |
| with open(file_path) as fp: | |
| data = json.load(fp) | |
| data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) | |
| data[EvalQueueColumn.revision.name] = data.get("revision", "main") | |
| all_evals.append(data) | |
| pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] | |
| running_list = [e for e in all_evals if e["status"] == "RUNNING"] | |
| finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] | |
| df_pending = pd.DataFrame.from_records(pending_list, columns=cols) | |
| df_running = pd.DataFrame.from_records(running_list, columns=cols) | |
| df_finished = pd.DataFrame.from_records(finished_list, columns=cols) | |
| return df_finished[cols], df_running[cols], df_pending[cols] | |