Spaces:
Running
Running
from dataclasses import dataclass, make_dataclass | |
from enum import Enum | |
import pandas as pd | |
from src.about import Tasks | |
def fields(raw_class): | |
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] | |
# These classes are for user facing column names, | |
# to avoid having to change them all around the code | |
# when a modif is needed | |
class ColumnContent: | |
name: str | |
type: str | |
displayed_by_default: bool | |
hidden: bool = False | |
never_hidden: bool = False | |
## Leaderboard columns | |
auto_eval_column_dict = [] | |
# Init | |
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) | |
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) | |
#Scores | |
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Média Geral ⬆️", "number", True)]) | |
# Adicionando colunas para as médias das áreas | |
auto_eval_column_dict.append(["area_medica_avg", ColumnContent, ColumnContent("Área Médica", "number", True)]) | |
auto_eval_column_dict.append(["area_direito_avg", ColumnContent, ColumnContent("Área do Direito", "number", True)]) | |
auto_eval_column_dict.append(["provas_militares_avg", ColumnContent, ColumnContent("Provas Militares", "number", True)]) | |
auto_eval_column_dict.append(["computacao_avg", ColumnContent, ColumnContent("Computação", "number", True)]) | |
auto_eval_column_dict.append(["discurso_odio_avg", ColumnContent, ColumnContent("Discurso de Ódio", "number", True)]) | |
auto_eval_column_dict.append(["economia_contabilidade_avg", ColumnContent, ColumnContent("Economia e Contabilidade", "number", True)]) | |
auto_eval_column_dict.append(["semantica_inferencia_avg", ColumnContent, ColumnContent("Semântica e Inferência", "number", True)]) | |
auto_eval_column_dict.append(["multidisciplinar_avg", ColumnContent, ColumnContent("Multidisciplinar", "number", True)]) | |
for task in Tasks: | |
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", False)]) # Mudar para False para não exibir por padrão na aba geral | |
# Model information | |
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) | |
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) | |
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) | |
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) | |
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) | |
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) | |
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) | |
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) | |
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) | |
# We use make dataclass to dynamically fill the scores from Tasks | |
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) | |
# Mapeamento das áreas de conhecimento para os Tasks correspondentes | |
AREA_DEFINITIONS = { | |
"Área Médica": [Tasks.REVALIDA, Tasks.MREX], | |
"Área do Direito": [Tasks.OAB, Tasks.ENAM], | |
"Provas Militares": [Tasks.AFA, Tasks.ITA, Tasks.IME], | |
"Computação": [Tasks.POSCOMP, Tasks.OBI], | |
"Discurso de Ódio": [Tasks.HATEBR, Tasks.PT_HATE_SPEECH, Tasks.TWEETSENTBR], | |
"Economia e Contabilidade": [Tasks.BCB, Tasks.CFCES], | |
"Semântica e Inferência": [Tasks.FAQUAD_NLI, Tasks.ASSIN2_RTE, Tasks.ASSIN2_STS], | |
"Multidisciplinar": [Tasks.ENEM, Tasks.BLUEX, Tasks.CNPU, Tasks.ENADE, Tasks.BNDES, Tasks.CACD_1, Tasks.CACD_2], | |
} | |
# Mapeamento dos nomes das áreas para as colunas de média correspondentes | |
AREA_AVG_COLUMN_MAP = { | |
"Área Médica": AutoEvalColumn.area_medica_avg.name, | |
"Área do Direito": AutoEvalColumn.area_direito_avg.name, | |
"Provas Militares": AutoEvalColumn.provas_militares_avg.name, | |
"Computação": AutoEvalColumn.computacao_avg.name, | |
"Discurso de Ódio": AutoEvalColumn.discurso_odio_avg.name, | |
"Economia e Contabilidade": AutoEvalColumn.economia_contabilidade_avg.name, | |
"Semântica e Inferência": AutoEvalColumn.semantica_inferencia_avg.name, | |
"Multidisciplinar": AutoEvalColumn.multidisciplinar_avg.name, | |
} | |
## For the queue columns in the submission tab | |
class EvalQueueColumn: # Queue column | |
model = ColumnContent("model", "markdown", True) | |
revision = ColumnContent("revision", "str", True) | |
private = ColumnContent("private", "bool", True) | |
precision = ColumnContent("precision", "str", True) | |
weight_type = ColumnContent("weight_type", "str", "Original") | |
status = ColumnContent("status", "str", True) | |
## All the model information that we might need | |
class ModelDetails: | |
name: str | |
display_name: str = "" | |
symbol: str = "" # emoji | |
class ModelType(Enum): | |
PT = ModelDetails(name="pretrained", symbol="🟢") | |
FT = ModelDetails(name="fine-tuned", symbol="🔶") | |
IFT = ModelDetails(name="instruction-tuned", symbol="⭕") | |
RL = ModelDetails(name="RL-tuned", symbol="🟦") | |
Unknown = ModelDetails(name="", symbol="?") | |
def to_str(self, separator=" "): | |
return f"{self.value.symbol}{separator}{self.value.name}" | |
def from_str(type): | |
if "fine-tuned" in type or "🔶" in type: | |
return ModelType.FT | |
if "pretrained" in type or "🟢" in type: | |
return ModelType.PT | |
if "RL-tuned" in type or "🟦" in type: | |
return ModelType.RL | |
if "instruction-tuned" in type or "⭕" in type: | |
return ModelType.IFT | |
return ModelType.Unknown | |
class WeightType(Enum): | |
Adapter = ModelDetails("Adapter") | |
Original = ModelDetails("Original") | |
Delta = ModelDetails("Delta") | |
class Precision(Enum): | |
float16 = ModelDetails("float16") | |
bfloat16 = ModelDetails("bfloat16") | |
Unknown = ModelDetails("?") | |
def from_str(precision): | |
if precision in ["torch.float16", "float16"]: | |
return Precision.float16 | |
if precision in ["torch.bfloat16", "bfloat16"]: | |
return Precision.bfloat16 | |
return Precision.Unknown | |
# Column selection | |
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] | |
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] | |
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] | |
BENCHMARK_COLS = [t.value.col_name for t in Tasks] | |