cemig / src /display /utils.py
LucasLima's picture
Upload 34 files
ac500fb verified
raw
history blame
6.71 kB
from dataclasses import dataclass, make_dataclass
from enum import Enum
import pandas as pd
from src.about import Tasks
def fields(raw_class):
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
# These classes are for user facing column names,
# to avoid having to change them all around the code
# when a modif is needed
@dataclass
class ColumnContent:
name: str
type: str
displayed_by_default: bool
hidden: bool = False
never_hidden: bool = False
## Leaderboard columns
auto_eval_column_dict = []
# Init
auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
#Scores
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Média Geral ⬆️", "number", True)])
# Adicionando colunas para as médias das áreas
auto_eval_column_dict.append(["area_medica_avg", ColumnContent, ColumnContent("Área Médica", "number", True)])
auto_eval_column_dict.append(["area_direito_avg", ColumnContent, ColumnContent("Área do Direito", "number", True)])
auto_eval_column_dict.append(["provas_militares_avg", ColumnContent, ColumnContent("Provas Militares", "number", True)])
auto_eval_column_dict.append(["computacao_avg", ColumnContent, ColumnContent("Computação", "number", True)])
auto_eval_column_dict.append(["discurso_odio_avg", ColumnContent, ColumnContent("Discurso de Ódio", "number", True)])
auto_eval_column_dict.append(["economia_contabilidade_avg", ColumnContent, ColumnContent("Economia e Contabilidade", "number", True)])
auto_eval_column_dict.append(["semantica_inferencia_avg", ColumnContent, ColumnContent("Semântica e Inferência", "number", True)])
auto_eval_column_dict.append(["multidisciplinar_avg", ColumnContent, ColumnContent("Multidisciplinar", "number", True)])
for task in Tasks:
auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", False)]) # Mudar para False para não exibir por padrão na aba geral
# Model information
auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
# We use make dataclass to dynamically fill the scores from Tasks
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
# Mapeamento das áreas de conhecimento para os Tasks correspondentes
AREA_DEFINITIONS = {
"Área Médica": [Tasks.REVALIDA, Tasks.MREX],
"Área do Direito": [Tasks.OAB, Tasks.ENAM],
"Provas Militares": [Tasks.AFA, Tasks.ITA, Tasks.IME],
"Computação": [Tasks.POSCOMP, Tasks.OBI],
"Discurso de Ódio": [Tasks.HATEBR, Tasks.PT_HATE_SPEECH, Tasks.TWEETSENTBR],
"Economia e Contabilidade": [Tasks.BCB, Tasks.CFCES],
"Semântica e Inferência": [Tasks.FAQUAD_NLI, Tasks.ASSIN2_RTE, Tasks.ASSIN2_STS],
"Multidisciplinar": [Tasks.ENEM, Tasks.BLUEX, Tasks.CNPU, Tasks.ENADE, Tasks.BNDES, Tasks.CACD_1, Tasks.CACD_2],
}
# Mapeamento dos nomes das áreas para as colunas de média correspondentes
AREA_AVG_COLUMN_MAP = {
"Área Médica": AutoEvalColumn.area_medica_avg.name,
"Área do Direito": AutoEvalColumn.area_direito_avg.name,
"Provas Militares": AutoEvalColumn.provas_militares_avg.name,
"Computação": AutoEvalColumn.computacao_avg.name,
"Discurso de Ódio": AutoEvalColumn.discurso_odio_avg.name,
"Economia e Contabilidade": AutoEvalColumn.economia_contabilidade_avg.name,
"Semântica e Inferência": AutoEvalColumn.semantica_inferencia_avg.name,
"Multidisciplinar": AutoEvalColumn.multidisciplinar_avg.name,
}
## For the queue columns in the submission tab
@dataclass(frozen=True)
class EvalQueueColumn: # Queue column
model = ColumnContent("model", "markdown", True)
revision = ColumnContent("revision", "str", True)
private = ColumnContent("private", "bool", True)
precision = ColumnContent("precision", "str", True)
weight_type = ColumnContent("weight_type", "str", "Original")
status = ColumnContent("status", "str", True)
## All the model information that we might need
@dataclass
class ModelDetails:
name: str
display_name: str = ""
symbol: str = "" # emoji
class ModelType(Enum):
PT = ModelDetails(name="pretrained", symbol="🟢")
FT = ModelDetails(name="fine-tuned", symbol="🔶")
IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
RL = ModelDetails(name="RL-tuned", symbol="🟦")
Unknown = ModelDetails(name="", symbol="?")
def to_str(self, separator=" "):
return f"{self.value.symbol}{separator}{self.value.name}"
@staticmethod
def from_str(type):
if "fine-tuned" in type or "🔶" in type:
return ModelType.FT
if "pretrained" in type or "🟢" in type:
return ModelType.PT
if "RL-tuned" in type or "🟦" in type:
return ModelType.RL
if "instruction-tuned" in type or "⭕" in type:
return ModelType.IFT
return ModelType.Unknown
class WeightType(Enum):
Adapter = ModelDetails("Adapter")
Original = ModelDetails("Original")
Delta = ModelDetails("Delta")
class Precision(Enum):
float16 = ModelDetails("float16")
bfloat16 = ModelDetails("bfloat16")
Unknown = ModelDetails("?")
def from_str(precision):
if precision in ["torch.float16", "float16"]:
return Precision.float16
if precision in ["torch.bfloat16", "bfloat16"]:
return Precision.bfloat16
return Precision.Unknown
# Column selection
COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
BENCHMARK_COLS = [t.value.col_name for t in Tasks]