Spaces:
Running
Running
from dataclasses import dataclass | |
from enum import Enum | |
class Task: | |
benchmark: str | |
metric: str | |
col_name: str | |
# Select your tasks here | |
# --------------------------------------------------- | |
class Tasks(Enum): | |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard | |
# Área Médica | |
REVALIDA = Task("revalida", "acc", "Revalida") | |
MREX = Task("mrex", "acc", "MREX") | |
# Área do Direito | |
OAB = Task("oab", "acc", "OAB") | |
ENAM = Task("enam", "acc", "ENAM") | |
# Provas Militares | |
AFA = Task("afa", "acc", "AFA") | |
ITA = Task("ita", "acc", "ITA") | |
IME = Task("ime", "acc", "IME") | |
# Computação | |
POSCOMP = Task("poscomp", "acc", "POSCOMP") | |
OBI = Task("obi", "acc", "OBI") | |
# Discurso de Ódio | |
HATEBR = Task("hatebr", "acc", "HateBR") | |
PT_HATE_SPEECH = Task("pt_hate_speech", "acc", "PT Hate Speech") | |
TWEETSENTBR = Task("tweetsentbr", "acc", "tweetSentBR") | |
# Economia e Contabilidade | |
BCB = Task("bcb", "acc", "BCB") | |
CFCES = Task("cfces", "acc", "CFCES") | |
# Compreensão de Semântica e Inferência Textual | |
FAQUAD_NLI = Task("faquad_nli", "acc", "FAQUAD NLI") | |
ASSIN2_RTE = Task("assin2_rte", "acc", "ASSIN2 RTE") | |
ASSIN2_STS = Task("assin2_sts", "acc", "ASSIN2 STS") | |
# Provas de Conhecimento Multidisciplinar | |
ENEM = Task("enem", "acc", "ENEM") | |
BLUEX = Task("bluex", "acc", "BLUEX") | |
CNPU = Task("cnpu", "acc", "CNPU") | |
ENADE = Task("enade", "acc", "ENADE") | |
BNDES = Task("bndes", "acc", "BNDES") | |
CACD_1 = Task("cacd_1", "acc", "CACD (1ª fase)") | |
CACD_2 = Task("cacd_2", "acc", "CACD (2ª fase)") | |
# Novas Áreas | |
ENERGY_DATASET = Task("energy_dataset", "acc", "energy_dataset") | |
REASONING_DATASET = Task("reasoning_dataset", "acc", "reasoning_dataset") | |
NUM_FEWSHOT = 0 # Change with your few shot | |
# --------------------------------------------------- | |
# Your leaderboard name | |
TITLE = """<h1 align="center" id="space-title">EnergyGPT Benchmark</h1>""" | |
# What does your leaderboard evaluate? | |
INTRODUCTION_TEXT = """ | |
""" | |
# Which evaluations are you running? how can people reproduce what you have? | |
LLM_BENCHMARKS_TEXT = f""" | |
## How it works | |
## Reproducibility | |
To reproduce our results, here is the commands you can run: | |
""" | |
EVALUATION_QUEUE_TEXT = """ | |
## Some good practices before submitting a model | |
### 1) Make sure you can load your model and tokenizer using AutoClasses: | |
```python | |
from transformers import AutoConfig, AutoModel, AutoTokenizer | |
config = AutoConfig.from_pretrained("your model name", revision=revision) | |
model = AutoModel.from_pretrained("your model name", revision=revision) | |
tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision) | |
``` | |
If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded. | |
Note: make sure your model is public! | |
Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted! | |
### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index) | |
It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`! | |
### 3) Make sure your model has an open license! | |
This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗 | |
### 4) Fill up your model card | |
When we add extra information about models to the leaderboard, it will be automatically taken from the model card | |
## In case of model failure | |
If your model is displayed in the `FAILED` category, its execution stopped. | |
Make sure you have followed the above steps first. | |
If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task). | |
""" | |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results" | |
CITATION_BUTTON_TEXT = r""" | |
""" | |