cemig / src /populate.py
LucasLima's picture
Update src/populate.py
543a007 verified
import json
import os
import numpy as np
import pandas as pd
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn, AREA_DEFINITIONS, AREA_AVG_COLUMN_MAP, fields, PLUE_GROUP_AREAS
from src.leaderboard.read_evals import get_raw_eval_results
from src.about import Tasks
def get_leaderboard_df(results_path: str = None, requests_path: str = None, cols: list = None, initial_df: pd.DataFrame = None) -> pd.DataFrame:
"""Creates a dataframe from all the individual experiment results or uses a provided initial DataFrame."""
if initial_df is not None:
df = initial_df.copy() # Use a cópia do DataFrame inicial
print("Usando DataFrame inicial fornecido.")
elif results_path and requests_path:
print(f"Lendo resultados de: {results_path}")
raw_data = get_raw_eval_results(results_path, requests_path)
all_data_json = [v.to_dict() for v in raw_data]
df = pd.DataFrame.from_records(all_data_json)
else:
print("Erro: Nenhum DataFrame inicial nem caminhos de resultados fornecidos.")
return pd.DataFrame() # Retorna DataFrame vazio se não houver dados
# Garantir que colunas de tasks existem antes de calcular médias
# (Opcional: Adicionar lógica para lidar com DFs que já têm médias calculadas)
tasks_in_df = [task.name for task in Tasks if task.name in df.columns]
print(f"Tasks encontrados no DataFrame: {tasks_in_df}")
# Calcular médias por área
for area_name, tasks_in_area in AREA_DEFINITIONS.items():
# Usar task.name que é a chave interna/coluna no df
area_cols = [task.name for task in tasks_in_area if task.name in df.columns]
avg_col_name = AREA_AVG_COLUMN_MAP[area_name]
if area_cols:
# Lidar com possíveis NaNs e substituir 0 por NaN nas colunas antes de calcular a média
df[avg_col_name] = df[area_cols].replace(0, np.nan).mean(axis=1, skipna=True)
print(f"Calculada média para {area_name} usando colunas: {area_cols}")
else:
df[avg_col_name] = np.nan
print(f"Nenhuma coluna encontrada para {area_name}, definindo média como NaN.")
# Calcular Média PLUE
plue_avg_cols_to_consider = [
AREA_AVG_COLUMN_MAP[area]
for area in PLUE_GROUP_AREAS
if area in AREA_AVG_COLUMN_MAP and AREA_AVG_COLUMN_MAP[area] in df.columns
]
if plue_avg_cols_to_consider:
# Substitui 0 por NaN antes de calcular a média PLUE
df[AutoEvalColumn.plue_avg.name] = df[plue_avg_cols_to_consider].replace(0, np.nan).mean(axis=1, skipna=True)
print(f"Calculada Média PLUE usando colunas: {plue_avg_cols_to_consider}")
else:
df[AutoEvalColumn.plue_avg.name] = np.nan
print("Nenhuma coluna de média de área PLUE encontrada, definindo Média PLUE como NaN.")
# Calcular Média Geral (baseada nas médias de TODAS as áreas)
avg_area_cols = [col for col in AREA_AVG_COLUMN_MAP.values() if col in df.columns]
if avg_area_cols:
# Substitui 0 por NaN antes de calcular a média Geral
df[AutoEvalColumn.average.name] = df[avg_area_cols].replace(0, np.nan).mean(axis=1, skipna=True)
print(f"Calculada Média Geral usando colunas: {avg_area_cols}")
else:
df[AutoEvalColumn.average.name] = np.nan
print("Nenhuma coluna de média de área encontrada, definindo Média Geral como NaN.")
# Ordenar pela Média Geral
if AutoEvalColumn.average.name in df.columns:
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
# Apenas arredondar os valores numéricos existentes
df = df.round(decimals=2)
# Substituir NaN por "-" para exibição
df = df.fillna('-')
print(f"Colunas retornadas por get_leaderboard_df: {df.columns.tolist()}") # Adicionar log
return df
def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
"""Creates the different dataframes for the evaluation queues requestes"""
entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
all_evals = []
for entry in entries:
if ".json" in entry:
file_path = os.path.join(save_path, entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
elif ".md" not in entry:
# this is a folder
sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")]
for sub_entry in sub_entries:
file_path = os.path.join(save_path, entry, sub_entry)
with open(file_path) as fp:
data = json.load(fp)
data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
data[EvalQueueColumn.revision.name] = data.get("revision", "main")
all_evals.append(data)
pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
running_list = [e for e in all_evals if e["status"] == "RUNNING"]
finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
df_running = pd.DataFrame.from_records(running_list, columns=cols)
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
return df_finished[cols], df_running[cols], df_pending[cols]