Spaces:
Running
Running
Update src/populate.py
Browse files- src/populate.py +3 -2
src/populate.py
CHANGED
@@ -35,8 +35,8 @@ def get_leaderboard_df(results_path: str = None, requests_path: str = None, cols
|
|
35 |
area_cols = [task.name for task in tasks_in_area if task.name in df.columns]
|
36 |
avg_col_name = AREA_AVG_COLUMN_MAP[area_name]
|
37 |
if area_cols:
|
38 |
-
# Lidar com possíveis NaNs nas colunas antes de calcular a média
|
39 |
-
df[avg_col_name] = df[area_cols].mean(axis=1, skipna=True)
|
40 |
print(f"Calculada média para {area_name} usando colunas: {area_cols}")
|
41 |
else:
|
42 |
df[avg_col_name] = np.nan
|
@@ -111,3 +111,4 @@ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
|
|
111 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
112 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
113 |
return df_finished[cols], df_running[cols], df_pending[cols]
|
|
|
|
35 |
area_cols = [task.name for task in tasks_in_area if task.name in df.columns]
|
36 |
avg_col_name = AREA_AVG_COLUMN_MAP[area_name]
|
37 |
if area_cols:
|
38 |
+
# Lidar com possíveis NaNs e substituir 0 por NaN nas colunas antes de calcular a média
|
39 |
+
df[avg_col_name] = df[area_cols].replace(0, np.nan).mean(axis=1, skipna=True)
|
40 |
print(f"Calculada média para {area_name} usando colunas: {area_cols}")
|
41 |
else:
|
42 |
df[avg_col_name] = np.nan
|
|
|
111 |
df_running = pd.DataFrame.from_records(running_list, columns=cols)
|
112 |
df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
|
113 |
return df_finished[cols], df_running[cols], df_pending[cols]
|
114 |
+
|