from dataclasses import dataclass, make_dataclass from enum import Enum import pandas as pd from src.about import Tasks def fields(raw_class): return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] # These classes are for user facing column names, # to avoid having to change them all around the code # when a modif is needed @dataclass class ColumnContent: name: str type: str displayed_by_default: bool hidden: bool = False never_hidden: bool = False ## Leaderboard columns auto_eval_column_dict = [] # Init auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)]) auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)]) #Scores auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Média Geral ⬆️", "number", True)]) # Média específica do grupo PLUE auto_eval_column_dict.append(["plue_avg", ColumnContent, ColumnContent("PLUE", "number", True)]) # Adicionando colunas para as médias das áreas (manter para cálculo e outras abas) auto_eval_column_dict.append(["area_medica_avg", ColumnContent, ColumnContent("Área Médica", "number", False)]) # Exibido por padrão = False auto_eval_column_dict.append(["area_direito_avg", ColumnContent, ColumnContent("Área do Direito", "number", False)]) # Exibido por padrão = False auto_eval_column_dict.append(["provas_militares_avg", ColumnContent, ColumnContent("Provas Militares", "number", False)]) # Exibido por padrão = False auto_eval_column_dict.append(["computacao_avg", ColumnContent, ColumnContent("Computação", "number", False)]) # Exibido por padrão = False auto_eval_column_dict.append(["discurso_odio_avg", ColumnContent, ColumnContent("Discurso de Ódio", "number", False)]) # Mover para PLUE -> False auto_eval_column_dict.append(["economia_contabilidade_avg", ColumnContent, ColumnContent("Economia e Contabilidade", "number", False)]) # Mover para PLUE -> False auto_eval_column_dict.append(["semantica_inferencia_avg", ColumnContent, ColumnContent("Semântica e Inferência", "number", False)]) # Mover para PLUE -> False auto_eval_column_dict.append(["multidisciplinar_avg", ColumnContent, ColumnContent("Multidisciplinar", "number", False)]) # Exibido por padrão = False # Médias Novas Áreas auto_eval_column_dict.append(["energy_avg", ColumnContent, ColumnContent("Energy", "number", False)]) # PLUE -> False auto_eval_column_dict.append(["reasoning_avg", ColumnContent, ColumnContent("Reasoning", "number", False)]) # PLUE -> False for task in Tasks: auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", False)]) # Model information auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)]) auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)]) auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)]) auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)]) auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)]) auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)]) auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)]) auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)]) auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)]) # We use make dataclass to dynamically fill the scores from Tasks AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) # Mapeamento das áreas de conhecimento para os Tasks correspondentes AREA_DEFINITIONS = { "Área Médica": [Tasks.REVALIDA, Tasks.MREX], "Área do Direito": [Tasks.OAB, Tasks.ENAM], "Provas Militares": [Tasks.AFA, Tasks.ITA, Tasks.IME], "Computação": [Tasks.POSCOMP, Tasks.OBI], "Discurso de Ódio": [Tasks.HATEBR, Tasks.PT_HATE_SPEECH, Tasks.TWEETSENTBR], "Economia e Contabilidade": [Tasks.BCB, Tasks.CFCES], "Semântica e Inferência": [Tasks.FAQUAD_NLI, Tasks.ASSIN2_RTE, Tasks.ASSIN2_STS], "Multidisciplinar": [Tasks.ENEM, Tasks.BLUEX, Tasks.CNPU, Tasks.ENADE, Tasks.BNDES, Tasks.CACD_1, Tasks.CACD_2], # Novas Áreas "Energy": [Tasks.ENERGY_DATASET], "Reasoning": [Tasks.REASONING_DATASET], } # Mapeamento dos nomes das áreas para as colunas de média correspondentes (Manter todos) AREA_AVG_COLUMN_MAP = { "Área Médica": AutoEvalColumn.area_medica_avg.name, "Área do Direito": AutoEvalColumn.area_direito_avg.name, "Provas Militares": AutoEvalColumn.provas_militares_avg.name, "Computação": AutoEvalColumn.computacao_avg.name, "Discurso de Ódio": AutoEvalColumn.discurso_odio_avg.name, "Economia e Contabilidade": AutoEvalColumn.economia_contabilidade_avg.name, "Semântica e Inferência": AutoEvalColumn.semantica_inferencia_avg.name, "Multidisciplinar": AutoEvalColumn.multidisciplinar_avg.name, # Novas Áreas "Energy": AutoEvalColumn.energy_avg.name, "Reasoning": AutoEvalColumn.reasoning_avg.name, } # --- Definição do Grupo PLUE Atualizado --- PLUE_GROUP_AREAS = [ "Área Médica", "Área do Direito", "Provas Militares", "Computação", "Discurso de Ódio", "Economia e Contabilidade", "Semântica e Inferência", "Multidisciplinar" ] # ------- ## For the queue columns in the submission tab @dataclass(frozen=True) class EvalQueueColumn: # Queue column model = ColumnContent("model", "markdown", True) revision = ColumnContent("revision", "str", True) private = ColumnContent("private", "bool", True) precision = ColumnContent("precision", "str", True) weight_type = ColumnContent("weight_type", "str", "Original") status = ColumnContent("status", "str", True) ## All the model information that we might need @dataclass class ModelDetails: name: str display_name: str = "" symbol: str = "" # emoji class ModelType(Enum): PT = ModelDetails(name="Pre trained", symbol="🟢") SFT = ModelDetails(name="Supervised Finetuning", symbol="🔶") RL = ModelDetails(name="Reinforcement Learning", symbol="🟦") Unknown = ModelDetails(name="", symbol="?") def to_str(self, separator=" : "): return f"{self.name}{separator}{self.value.name}" @staticmethod def from_str(type_str): if "fine-tuned" in type_str.lower() or \ "instruction-tuned" in type_str.lower() or \ "supervised finetuning" in type_str.lower() or \ "🔶" in type_str or \ type_str == "SFT" or type_str == "FT" or type_str == "IFT": return ModelType.SFT if "pretrained" in type_str.lower() or "pre trained" in type_str.lower() or "pré-treinado" in type_str.lower() or "🟢" in type_str or type_str == "PT": return ModelType.PT if "rl-tuned" in type_str.lower() or "reinforcement learning" in type_str.lower() or "🟦" in type_str or type_str == "RL": return ModelType.RL return ModelType.Unknown class WeightType(Enum): Adapter = ModelDetails("Adapter") Original = ModelDetails("Original") Delta = ModelDetails("Delta") class Precision(Enum): float16 = ModelDetails("float16") bfloat16 = ModelDetails("bfloat16") Unknown = ModelDetails("?") def from_str(precision): if precision in ["torch.float16", "float16"]: return Precision.float16 if precision in ["torch.bfloat16", "bfloat16"]: return Precision.bfloat16 return Precision.Unknown # Column selection COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden] EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] BENCHMARK_COLS = [t.value.col_name for t in Tasks]