import json import os import numpy as np import pandas as pd from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn, AREA_DEFINITIONS, AREA_AVG_COLUMN_MAP, fields, PLUE_GROUP_AREAS from src.leaderboard.read_evals import get_raw_eval_results from src.about import Tasks def get_leaderboard_df(results_path: str = None, requests_path: str = None, cols: list = None, initial_df: pd.DataFrame = None) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results or uses a provided initial DataFrame.""" if initial_df is not None: df = initial_df.copy() # Use a cópia do DataFrame inicial print("Usando DataFrame inicial fornecido.") elif results_path and requests_path: print(f"Lendo resultados de: {results_path}") raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] df = pd.DataFrame.from_records(all_data_json) else: print("Erro: Nenhum DataFrame inicial nem caminhos de resultados fornecidos.") return pd.DataFrame() # Retorna DataFrame vazio se não houver dados # Garantir que colunas de tasks existem antes de calcular médias # (Opcional: Adicionar lógica para lidar com DFs que já têm médias calculadas) tasks_in_df = [task.name for task in Tasks if task.name in df.columns] print(f"Tasks encontrados no DataFrame: {tasks_in_df}") # Calcular médias por área for area_name, tasks_in_area in AREA_DEFINITIONS.items(): # Usar task.name que é a chave interna/coluna no df area_cols = [task.name for task in tasks_in_area if task.name in df.columns] avg_col_name = AREA_AVG_COLUMN_MAP[area_name] if area_cols: # Lidar com possíveis NaNs e substituir 0 por NaN nas colunas antes de calcular a média df[avg_col_name] = df[area_cols].replace(0, np.nan).mean(axis=1, skipna=True) print(f"Calculada média para {area_name} usando colunas: {area_cols}") else: df[avg_col_name] = np.nan print(f"Nenhuma coluna encontrada para {area_name}, definindo média como NaN.") # Calcular Média PLUE plue_avg_cols_to_consider = [ AREA_AVG_COLUMN_MAP[area] for area in PLUE_GROUP_AREAS if area in AREA_AVG_COLUMN_MAP and AREA_AVG_COLUMN_MAP[area] in df.columns ] if plue_avg_cols_to_consider: # Substitui 0 por NaN antes de calcular a média PLUE df[AutoEvalColumn.plue_avg.name] = df[plue_avg_cols_to_consider].replace(0, np.nan).mean(axis=1, skipna=True) print(f"Calculada Média PLUE usando colunas: {plue_avg_cols_to_consider}") else: df[AutoEvalColumn.plue_avg.name] = np.nan print("Nenhuma coluna de média de área PLUE encontrada, definindo Média PLUE como NaN.") # Calcular Média Geral (baseada nas médias de TODAS as áreas) avg_area_cols = [col for col in AREA_AVG_COLUMN_MAP.values() if col in df.columns] if avg_area_cols: # Substitui 0 por NaN antes de calcular a média Geral df[AutoEvalColumn.average.name] = df[avg_area_cols].replace(0, np.nan).mean(axis=1, skipna=True) print(f"Calculada Média Geral usando colunas: {avg_area_cols}") else: df[AutoEvalColumn.average.name] = np.nan print("Nenhuma coluna de média de área encontrada, definindo Média Geral como NaN.") # Ordenar pela Média Geral if AutoEvalColumn.average.name in df.columns: df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False) # Apenas arredondar os valores numéricos existentes df = df.round(decimals=2) # Substituir NaN por "-" para exibição df = df.fillna('-') print(f"Colunas retornadas por get_leaderboard_df: {df.columns.tolist()}") # Adicionar log return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")] all_evals = [] for entry in entries: if ".json" in entry: file_path = os.path.join(save_path, entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) elif ".md" not in entry: # this is a folder sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if os.path.isfile(e) and not e.startswith(".")] for sub_entry in sub_entries: file_path = os.path.join(save_path, entry, sub_entry) with open(file_path) as fp: data = json.load(fp) data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]