Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- api/index.py +32 -30
api/index.py
CHANGED
|
@@ -25,6 +25,7 @@ client = OpenAI()
|
|
| 25 |
|
| 26 |
def call_openai(pil_image):
|
| 27 |
# Save the PIL image to a bytes buffer
|
|
|
|
| 28 |
buffered = io.BytesIO()
|
| 29 |
pil_image.save(buffered, format="JPEG")
|
| 30 |
|
|
@@ -62,7 +63,8 @@ def call_openai(pil_image):
|
|
| 62 |
raise gr.Error("Unknown Error")
|
| 63 |
|
| 64 |
def image_classifier(moodboard, starter_image, image_strength, prompt):
|
| 65 |
-
|
|
|
|
| 66 |
if moodboard is not None and starter_image is not None:
|
| 67 |
|
| 68 |
# Convert the numpy array to a PIL image
|
|
@@ -84,10 +86,10 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
|
|
| 84 |
# Resize the image
|
| 85 |
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
|
| 86 |
|
| 87 |
-
openai_response = call_openai(pil_image)
|
| 88 |
-
openai_response = openai_response.replace('moodboard', '')
|
| 89 |
-
openai_response = openai_response.replace('share', '')
|
| 90 |
-
openai_response = openai_response.replace('unified', '')
|
| 91 |
|
| 92 |
# Save the starter image to a bytes buffer
|
| 93 |
buffered = io.BytesIO()
|
|
@@ -99,35 +101,35 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
|
|
| 99 |
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
| 100 |
|
| 101 |
# Call Stable Diffusion API with the response from OpenAI
|
| 102 |
-
input = {
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
}
|
| 114 |
|
| 115 |
-
output = replicate.run(
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
)
|
| 119 |
|
| 120 |
-
images = []
|
| 121 |
-
for i in range(min(len(output), 3)):
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
|
| 126 |
-
# Add empty images if fewer than 3 were returned
|
| 127 |
-
while len(images) < 3:
|
| 128 |
-
|
| 129 |
|
| 130 |
-
return images
|
| 131 |
|
| 132 |
header = "Set up APIs on HuggingFace or use free at https://app.idai.tools/"
|
| 133 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"], title=header)
|
|
|
|
| 25 |
|
| 26 |
def call_openai(pil_image):
|
| 27 |
# Save the PIL image to a bytes buffer
|
| 28 |
+
|
| 29 |
buffered = io.BytesIO()
|
| 30 |
pil_image.save(buffered, format="JPEG")
|
| 31 |
|
|
|
|
| 63 |
raise gr.Error("Unknown Error")
|
| 64 |
|
| 65 |
def image_classifier(moodboard, starter_image, image_strength, prompt):
|
| 66 |
+
raise gr.Error(header)
|
| 67 |
+
|
| 68 |
if moodboard is not None and starter_image is not None:
|
| 69 |
|
| 70 |
# Convert the numpy array to a PIL image
|
|
|
|
| 86 |
# Resize the image
|
| 87 |
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
|
| 88 |
|
| 89 |
+
#openai_response = call_openai(pil_image)
|
| 90 |
+
#openai_response = openai_response.replace('moodboard', '')
|
| 91 |
+
#openai_response = openai_response.replace('share', '')
|
| 92 |
+
#openai_response = openai_response.replace('unified', '')
|
| 93 |
|
| 94 |
# Save the starter image to a bytes buffer
|
| 95 |
buffered = io.BytesIO()
|
|
|
|
| 101 |
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
| 102 |
|
| 103 |
# Call Stable Diffusion API with the response from OpenAI
|
| 104 |
+
# input = {
|
| 105 |
+
# "width": 768,
|
| 106 |
+
# "height": 768,
|
| 107 |
+
# "prompt": "high quality render of " + prompt + ", " + openai_response[12:],
|
| 108 |
+
# "negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
| 109 |
+
# "refine": "expert_ensemble_refiner",
|
| 110 |
+
# "image": "data:image/jpeg;base64," + starter_image_base64,
|
| 111 |
+
# "apply_watermark": False,
|
| 112 |
+
# "num_inference_steps": 25,
|
| 113 |
+
# "prompt_strength": 1-image_strength,
|
| 114 |
+
# "num_outputs": 3
|
| 115 |
+
# }
|
| 116 |
|
| 117 |
+
# output = replicate.run(
|
| 118 |
+
# "stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
| 119 |
+
# input=input
|
| 120 |
+
# )
|
| 121 |
|
| 122 |
+
# images = []
|
| 123 |
+
# for i in range(min(len(output), 3)):
|
| 124 |
+
# image_url = output[i]
|
| 125 |
+
# response = requests.get(image_url)
|
| 126 |
+
# images.append(Image.open(io.BytesIO(response.content)))
|
| 127 |
|
| 128 |
+
# # Add empty images if fewer than 3 were returned
|
| 129 |
+
# while len(images) < 3:
|
| 130 |
+
# images.append(Image.new('RGB', (768, 768), 'gray'))
|
| 131 |
|
| 132 |
+
# return images
|
| 133 |
|
| 134 |
header = "Set up APIs on HuggingFace or use free at https://app.idai.tools/"
|
| 135 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"], title=header)
|