Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- api/index.py +62 -54
api/index.py
CHANGED
|
@@ -33,63 +33,78 @@ def call_openai(pil_image):
|
|
| 33 |
# Encode the image to base64
|
| 34 |
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"
|
|
|
|
|
|
|
| 47 |
},
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def image_classifier(moodboard, starter_image, image_strength, prompt):
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
#
|
| 66 |
-
if starter_image_pil.size[0] > starter_image_pil.size[1]:
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
|
|
|
| 87 |
|
| 88 |
# Call Stable Diffusion API with the response from OpenAI
|
| 89 |
input = {
|
| 90 |
"width": 768,
|
| 91 |
"height": 768,
|
| 92 |
-
"prompt": "high quality render of " + prompt + ", " + openai_response[
|
| 93 |
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
| 94 |
"refine": "expert_ensemble_refiner",
|
| 95 |
"image": "data:image/jpeg;base64," + starter_image_base64,
|
|
@@ -125,12 +140,5 @@ def image_classifier(moodboard, starter_image, image_strength, prompt):
|
|
| 125 |
|
| 126 |
return [img1, img2, img3] # Return the image object
|
| 127 |
|
| 128 |
-
|
| 129 |
-
# app = Flask(__name__)
|
| 130 |
-
# os.environ.get("REPLICATE_API_TOKEN")
|
| 131 |
-
|
| 132 |
-
# @app.route("/")
|
| 133 |
-
# def index():
|
| 134 |
-
|
| 135 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.025, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"])
|
| 136 |
demo.launch(share=False)
|
|
|
|
| 33 |
# Encode the image to base64
|
| 34 |
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 35 |
|
| 36 |
+
try:
|
| 37 |
+
response = client.chat.completions.create(
|
| 38 |
+
model="gpt-4o",
|
| 39 |
+
messages=[
|
| 40 |
+
{
|
| 41 |
+
"role": "user",
|
| 42 |
+
"content": [
|
| 43 |
+
{"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures"},
|
| 44 |
+
{
|
| 45 |
+
"type": "image_url",
|
| 46 |
+
"image_url": {
|
| 47 |
+
"url": "data:image/jpeg;base64," + image_data,
|
| 48 |
+
},
|
| 49 |
},
|
| 50 |
+
],
|
| 51 |
+
}
|
| 52 |
+
],
|
| 53 |
+
max_tokens=300,
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
return response.choices[0].message.content
|
| 57 |
+
|
| 58 |
+
except openai.BadRequestError as e:
|
| 59 |
+
print(e)
|
| 60 |
+
print("e type")
|
| 61 |
+
print(type(e))
|
| 62 |
+
raise gr.Error(f"Please retry with a different moodboard file")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
raise gr.Error("Unknown Error")
|
| 65 |
|
| 66 |
def image_classifier(moodboard, starter_image, image_strength, prompt):
|
| 67 |
|
| 68 |
+
if moodboard is not None and starter_image is not None:
|
| 69 |
+
|
| 70 |
+
# Convert the numpy array to a PIL image
|
| 71 |
+
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
| 72 |
+
starter_image_pil = Image.fromarray(starter_image.astype('uint8'))
|
| 73 |
+
|
| 74 |
+
# Resize the starter image if either dimension is larger than 768 pixels
|
| 75 |
+
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
|
| 76 |
+
# Calculate the new size while maintaining the aspect ratio
|
| 77 |
+
if starter_image_pil.size[0] > starter_image_pil.size[1]:
|
| 78 |
+
# Width is larger than height
|
| 79 |
+
new_width = 768
|
| 80 |
+
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1])
|
| 81 |
+
else:
|
| 82 |
+
# Height is larger than width
|
| 83 |
+
new_height = 768
|
| 84 |
+
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0])
|
| 85 |
+
|
| 86 |
+
# Resize the image
|
| 87 |
+
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
|
| 88 |
|
| 89 |
+
openai_response = call_openai(pil_image)
|
| 90 |
+
openai_response = openai_response.replace('moodboard', '')
|
| 91 |
+
openai_response = openai_response.replace('share', '')
|
| 92 |
+
openai_response = openai_response.replace('unified', '')
|
| 93 |
+
|
| 94 |
+
# Save the starter image to a bytes buffer
|
| 95 |
+
buffered = io.BytesIO()
|
| 96 |
+
starter_image_pil.save(buffered, format="JPEG")
|
| 97 |
+
|
| 98 |
+
# Encode the starter image to base64
|
| 99 |
+
starter_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 100 |
+
else:
|
| 101 |
+
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
| 102 |
|
| 103 |
# Call Stable Diffusion API with the response from OpenAI
|
| 104 |
input = {
|
| 105 |
"width": 768,
|
| 106 |
"height": 768,
|
| 107 |
+
"prompt": "high quality render of " + prompt + ", " + openai_response[12:],
|
| 108 |
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
| 109 |
"refine": "expert_ensemble_refiner",
|
| 110 |
"image": "data:image/jpeg;base64," + starter_image_base64,
|
|
|
|
| 140 |
|
| 141 |
return [img1, img2, img3] # Return the image object
|
| 142 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.025, value=0.2, label="Image Strength"), "text"], outputs=["image", "image", "image"])
|
| 144 |
demo.launch(share=False)
|