Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- api/index.py +38 -20
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
api/index.py
CHANGED
|
@@ -72,7 +72,7 @@ def call_openai(pil_image):
|
|
| 72 |
# Could even do this 4 different times to get more diversity of renders
|
| 73 |
# Add "simple" to prompt before word
|
| 74 |
|
| 75 |
-
def image_classifier(moodboard, prompt):
|
| 76 |
|
| 77 |
if moodboard is not None:
|
| 78 |
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
|
@@ -81,29 +81,43 @@ def image_classifier(moodboard, prompt):
|
|
| 81 |
|
| 82 |
else:
|
| 83 |
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
input = {
|
| 86 |
"prompt": "high quality render of a " + prompt + " which " + openai_response + ", minimalist and simple mockup on a white background",
|
| 87 |
"output_format": "jpg"
|
| 88 |
}
|
| 89 |
|
| 90 |
-
try:
|
| 91 |
-
output = replicate.run(
|
| 92 |
-
"stability-ai/stable-diffusion-3",
|
| 93 |
-
input=input
|
| 94 |
-
)
|
| 95 |
-
except Exception as e:
|
| 96 |
-
raise gr.Error(f"Error: {e}")
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
except Exception as e:
|
| 103 |
-
raise gr.Error(f"Image download failed: {e}")
|
| 104 |
-
|
| 105 |
-
input["aspect_ratio"] = "3:2"
|
| 106 |
-
input["cfg"] = 6
|
| 107 |
|
| 108 |
try:
|
| 109 |
output = replicate.run(
|
|
@@ -128,13 +142,17 @@ def image_classifier(moodboard, prompt):
|
|
| 128 |
"num_outputs": 2,
|
| 129 |
"guidance_scale": 8.5
|
| 130 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 131 |
|
| 132 |
output = replicate.run(
|
| 133 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
| 134 |
input=input
|
| 135 |
)
|
| 136 |
|
| 137 |
-
images = [
|
| 138 |
|
| 139 |
for i in range(min(len(output), 2)):
|
| 140 |
image_url = output[i]
|
|
@@ -142,13 +160,13 @@ def image_classifier(moodboard, prompt):
|
|
| 142 |
images.append(Image.open(io.BytesIO(response.content)))
|
| 143 |
|
| 144 |
# Add empty images if fewer than 3 were returned
|
| 145 |
-
while len(images) <
|
| 146 |
images.append(Image.new('RGB', (768, 768), 'gray'))
|
| 147 |
|
| 148 |
images.reverse()
|
| 149 |
return images
|
| 150 |
|
| 151 |
-
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"
|
| 152 |
demo.launch(share=True)
|
| 153 |
|
| 154 |
|
|
|
|
| 72 |
# Could even do this 4 different times to get more diversity of renders
|
| 73 |
# Add "simple" to prompt before word
|
| 74 |
|
| 75 |
+
def image_classifier(moodboard, starter_image, image_strength, prompt):
|
| 76 |
|
| 77 |
if moodboard is not None:
|
| 78 |
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
|
|
|
| 81 |
|
| 82 |
else:
|
| 83 |
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
| 84 |
+
|
| 85 |
+
if starter_image is not None:
|
| 86 |
+
starter_image_pil = Image.fromarray(starter_image.astype('uint8'))
|
| 87 |
+
|
| 88 |
+
# Resize the starter image if either dimension is larger than 768 pixels
|
| 89 |
+
if starter_image_pil.size[0] > 768 or starter_image_pil.size[1] > 768:
|
| 90 |
+
# Calculate the new size while maintaining the aspect ratio
|
| 91 |
+
if starter_image_pil.size[0] > starter_image_pil.size[1]:
|
| 92 |
+
# Width is larger than height
|
| 93 |
+
new_width = 768
|
| 94 |
+
new_height = int((768 / starter_image_pil.size[0]) * starter_image_pil.size[1])
|
| 95 |
+
else:
|
| 96 |
+
# Height is larger than width
|
| 97 |
+
new_height = 768
|
| 98 |
+
new_width = int((768 / starter_image_pil.size[1]) * starter_image_pil.size[0])
|
| 99 |
+
|
| 100 |
+
# Resize the image
|
| 101 |
+
starter_image_pil = starter_image_pil.resize((new_width, new_height), Image.LANCZOS)
|
| 102 |
+
|
| 103 |
+
# Save the starter image to a bytes buffer
|
| 104 |
+
buffered = io.BytesIO()
|
| 105 |
+
starter_image_pil.save(buffered, format="JPEG")
|
| 106 |
+
|
| 107 |
+
# Encode the starter image to base64
|
| 108 |
+
starter_image_base64 = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 109 |
+
|
| 110 |
|
| 111 |
input = {
|
| 112 |
"prompt": "high quality render of a " + prompt + " which " + openai_response + ", minimalist and simple mockup on a white background",
|
| 113 |
"output_format": "jpg"
|
| 114 |
}
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
if starter_image is not None:
|
| 118 |
+
input["image"] = "data:image/jpeg;base64," + starter_image_base64
|
| 119 |
+
input["prompt_strength"] = 1-image_strength
|
| 120 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
try:
|
| 123 |
output = replicate.run(
|
|
|
|
| 142 |
"num_outputs": 2,
|
| 143 |
"guidance_scale": 8.5
|
| 144 |
}
|
| 145 |
+
|
| 146 |
+
if starter_image is not None:
|
| 147 |
+
input["image"] = "data:image/jpeg;base64," + starter_image_base64
|
| 148 |
+
input["prompt_strength"] = 1-image_strength
|
| 149 |
|
| 150 |
output = replicate.run(
|
| 151 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
| 152 |
input=input
|
| 153 |
)
|
| 154 |
|
| 155 |
+
images = [img2]
|
| 156 |
|
| 157 |
for i in range(min(len(output), 2)):
|
| 158 |
image_url = output[i]
|
|
|
|
| 160 |
images.append(Image.open(io.BytesIO(response.content)))
|
| 161 |
|
| 162 |
# Add empty images if fewer than 3 were returned
|
| 163 |
+
while len(images) < 3:
|
| 164 |
images.append(Image.new('RGB', (768, 768), 'gray'))
|
| 165 |
|
| 166 |
images.reverse()
|
| 167 |
return images
|
| 168 |
|
| 169 |
+
demo = gr.Interface(fn=image_classifier, inputs=["image", "image", gr.Slider(0, 1, step=0.05, value=0.2), "text"], outputs=["image", "image", "image"])
|
| 170 |
demo.launch(share=True)
|
| 171 |
|
| 172 |
|