Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- api/index.py +13 -40
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
api/index.py
CHANGED
|
@@ -64,16 +64,20 @@ def image_classifier(moodboard, prompt):
|
|
| 64 |
|
| 65 |
# Call Stable Diffusion API with the response from OpenAI
|
| 66 |
input = {
|
|
|
|
|
|
|
| 67 |
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
| 68 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
}
|
| 70 |
|
| 71 |
output = replicate.run(
|
| 72 |
-
"stability-ai/
|
| 73 |
input=input
|
| 74 |
)
|
| 75 |
-
|
| 76 |
-
print(output)
|
| 77 |
|
| 78 |
# Download the image from the URL
|
| 79 |
image_url = output[0]
|
|
@@ -82,50 +86,19 @@ def image_classifier(moodboard, prompt):
|
|
| 82 |
print(response)
|
| 83 |
img1 = Image.open(io.BytesIO(response.content))
|
| 84 |
|
| 85 |
-
|
| 86 |
-
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
| 87 |
-
"aspect_ratio": "3:2",
|
| 88 |
-
"output_format": "jpg",
|
| 89 |
-
"cfg":6
|
| 90 |
-
}
|
| 91 |
-
|
| 92 |
-
output = replicate.run(
|
| 93 |
-
"stability-ai/stable-diffusion-3",
|
| 94 |
-
input=input
|
| 95 |
-
)
|
| 96 |
-
|
| 97 |
-
print(output)
|
| 98 |
-
|
| 99 |
-
# Download the image from the URL
|
| 100 |
-
image_url = output[0]
|
| 101 |
print(image_url)
|
| 102 |
response = requests.get(image_url)
|
| 103 |
print(response)
|
| 104 |
img2 = Image.open(io.BytesIO(response.content))
|
| 105 |
|
| 106 |
-
|
| 107 |
-
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
| 108 |
-
"aspect_ratio": "4:5",
|
| 109 |
-
"output_format": "jpg",
|
| 110 |
-
"cfg":5.5,
|
| 111 |
-
"output_quality": 85
|
| 112 |
-
}
|
| 113 |
-
|
| 114 |
-
output = replicate.run(
|
| 115 |
-
"stability-ai/stable-diffusion-3",
|
| 116 |
-
input=input
|
| 117 |
-
)
|
| 118 |
-
|
| 119 |
-
print(output)
|
| 120 |
-
|
| 121 |
-
# Download the image from the URL
|
| 122 |
-
image_url = output[0]
|
| 123 |
print(image_url)
|
| 124 |
response = requests.get(image_url)
|
| 125 |
print(response)
|
| 126 |
img3 = Image.open(io.BytesIO(response.content))
|
| 127 |
-
|
| 128 |
-
return [img1, img2, img3]
|
| 129 |
|
| 130 |
|
| 131 |
# app = Flask(__name__)
|
|
@@ -135,4 +108,4 @@ def image_classifier(moodboard, prompt):
|
|
| 135 |
# def index():
|
| 136 |
|
| 137 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"])
|
| 138 |
-
demo.launch()
|
|
|
|
| 64 |
|
| 65 |
# Call Stable Diffusion API with the response from OpenAI
|
| 66 |
input = {
|
| 67 |
+
"width": 768,
|
| 68 |
+
"height": 768,
|
| 69 |
"prompt": "high quality render of " + prompt + ", " + openai_response[20:],
|
| 70 |
+
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
| 71 |
+
"refine": "expert_ensemble_refiner",
|
| 72 |
+
"apply_watermark": False,
|
| 73 |
+
"num_inference_steps": 25,
|
| 74 |
+
"num_outputs": 3
|
| 75 |
}
|
| 76 |
|
| 77 |
output = replicate.run(
|
| 78 |
+
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
| 79 |
input=input
|
| 80 |
)
|
|
|
|
|
|
|
| 81 |
|
| 82 |
# Download the image from the URL
|
| 83 |
image_url = output[0]
|
|
|
|
| 86 |
print(response)
|
| 87 |
img1 = Image.open(io.BytesIO(response.content))
|
| 88 |
|
| 89 |
+
image_url = output[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
print(image_url)
|
| 91 |
response = requests.get(image_url)
|
| 92 |
print(response)
|
| 93 |
img2 = Image.open(io.BytesIO(response.content))
|
| 94 |
|
| 95 |
+
image_url = output[2]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
print(image_url)
|
| 97 |
response = requests.get(image_url)
|
| 98 |
print(response)
|
| 99 |
img3 = Image.open(io.BytesIO(response.content))
|
| 100 |
+
|
| 101 |
+
return [img1, img2, img3] # Return the image object
|
| 102 |
|
| 103 |
|
| 104 |
# app = Flask(__name__)
|
|
|
|
| 108 |
# def index():
|
| 109 |
|
| 110 |
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"])
|
| 111 |
+
demo.launch(share=True)
|