Spaces:
Running
Running
Upload folder using huggingface_hub
Browse files- api/index.py +95 -52
api/index.py
CHANGED
|
@@ -8,10 +8,16 @@ import requests
|
|
| 8 |
import replicate
|
| 9 |
from flask import Flask, request
|
| 10 |
import gradio as gr
|
|
|
|
|
|
|
| 11 |
from openai import OpenAI
|
| 12 |
|
|
|
|
| 13 |
from dotenv import load_dotenv, find_dotenv
|
| 14 |
|
|
|
|
|
|
|
|
|
|
| 15 |
# Locate the .env file
|
| 16 |
dotenv_path = find_dotenv()
|
| 17 |
|
|
@@ -33,79 +39,116 @@ def call_openai(pil_image):
|
|
| 33 |
# Encode the image to base64
|
| 34 |
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
"
|
|
|
|
|
|
|
| 47 |
},
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
|
| 57 |
def image_classifier(moodboard, prompt):
|
| 58 |
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
# Call Stable Diffusion API with the response from OpenAI
|
| 66 |
input = {
|
| 67 |
"width": 768,
|
| 68 |
"height": 768,
|
| 69 |
-
"prompt": "high quality render of " + prompt + ", " + openai_response[
|
| 70 |
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
| 71 |
"refine": "expert_ensemble_refiner",
|
| 72 |
"apply_watermark": False,
|
| 73 |
"num_inference_steps": 25,
|
| 74 |
-
"num_outputs":
|
| 75 |
}
|
| 76 |
|
| 77 |
output = replicate.run(
|
| 78 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
| 79 |
input=input
|
| 80 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
response = requests.get(image_url)
|
| 92 |
-
print(response)
|
| 93 |
-
img2 = Image.open(io.BytesIO(response.content))
|
| 94 |
-
|
| 95 |
-
image_url = output[2]
|
| 96 |
-
print(image_url)
|
| 97 |
-
response = requests.get(image_url)
|
| 98 |
-
print(response)
|
| 99 |
-
img3 = Image.open(io.BytesIO(response.content))
|
| 100 |
-
|
| 101 |
-
return [img1, img2, img3] # Return the image object
|
| 102 |
|
| 103 |
|
| 104 |
-
# app = Flask(__name__)
|
| 105 |
-
# os.environ.get("REPLICATE_API_TOKEN")
|
| 106 |
|
| 107 |
-
# @app.route("/")
|
| 108 |
-
# def index():
|
| 109 |
|
| 110 |
-
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image"])
|
| 111 |
-
demo.launch(share=True)
|
|
|
|
| 8 |
import replicate
|
| 9 |
from flask import Flask, request
|
| 10 |
import gradio as gr
|
| 11 |
+
|
| 12 |
+
import openai
|
| 13 |
from openai import OpenAI
|
| 14 |
|
| 15 |
+
|
| 16 |
from dotenv import load_dotenv, find_dotenv
|
| 17 |
|
| 18 |
+
import json
|
| 19 |
+
|
| 20 |
+
|
| 21 |
# Locate the .env file
|
| 22 |
dotenv_path = find_dotenv()
|
| 23 |
|
|
|
|
| 39 |
# Encode the image to base64
|
| 40 |
image_data = base64.b64encode(buffered.getvalue()).decode('utf-8')
|
| 41 |
|
| 42 |
+
try:
|
| 43 |
+
response = client.chat.completions.create(
|
| 44 |
+
model="gpt-4o",
|
| 45 |
+
messages=[
|
| 46 |
+
{
|
| 47 |
+
"role": "user",
|
| 48 |
+
"content": [
|
| 49 |
+
{"type": "text", "text": "You are a product designer. I've attached a moodboard here. In one sentence, what do all of these elements have in common? Answer from a design language perspective, if you were telling another designer to create something similar, including any repeating colors and materials and shapes and textures"},
|
| 50 |
+
{
|
| 51 |
+
"type": "image_url",
|
| 52 |
+
"image_url": {
|
| 53 |
+
"url": "data:image/jpeg;base64," + image_data,
|
| 54 |
+
},
|
| 55 |
},
|
| 56 |
+
],
|
| 57 |
+
}
|
| 58 |
+
],
|
| 59 |
+
max_tokens=300,
|
| 60 |
+
)
|
| 61 |
+
return response.choices[0].message.content
|
| 62 |
+
except openai.BadRequestError as e:
|
| 63 |
+
print(e)
|
| 64 |
+
print("e type")
|
| 65 |
+
print(type(e))
|
| 66 |
+
raise gr.Error(f"Please retry with a different moodboard file (below 20 MB in size and is of one the following formats: ['png', 'jpeg', 'gif', 'webp'])")
|
| 67 |
+
except Exception as e:
|
| 68 |
+
raise gr.Error("Unknown Error")
|
| 69 |
+
|
| 70 |
|
| 71 |
def image_classifier(moodboard, prompt):
|
| 72 |
|
| 73 |
+
if moodboard is not None:
|
| 74 |
+
pil_image = Image.fromarray(moodboard.astype('uint8'))
|
| 75 |
+
|
| 76 |
+
openai_response = call_openai(pil_image)
|
| 77 |
+
openai_response = openai_response.replace('moodboard', '')
|
| 78 |
+
openai_response = openai_response.replace('share', '')
|
| 79 |
+
openai_response = openai_response.replace('unified', '')
|
| 80 |
+
else:
|
| 81 |
+
raise gr.Error(f"Please upload a moodboard to control image generation style")
|
| 82 |
+
|
| 83 |
+
input = {
|
| 84 |
+
"prompt": "high quality render of " + prompt + ", " + openai_response[12:],
|
| 85 |
+
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
| 86 |
+
"output_format": "jpg"
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
try:
|
| 90 |
+
output = replicate.run(
|
| 91 |
+
"stability-ai/stable-diffusion-3",
|
| 92 |
+
input=input
|
| 93 |
+
)
|
| 94 |
+
except Exception as e:
|
| 95 |
+
raise gr.Error(f"Error: {e}")
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
image_url = output[0]
|
| 99 |
+
response = requests.get(image_url)
|
| 100 |
+
img1 = Image.open(io.BytesIO(response.content))
|
| 101 |
+
except Exception as e:
|
| 102 |
+
raise gr.Error(f"Image download failed: {e}")
|
| 103 |
+
|
| 104 |
+
input["aspect_ratio"] = "3:2"
|
| 105 |
+
input["cfg"] = 6
|
| 106 |
|
| 107 |
+
try:
|
| 108 |
+
output = replicate.run(
|
| 109 |
+
"stability-ai/stable-diffusion-3",
|
| 110 |
+
input=input
|
| 111 |
+
)
|
| 112 |
+
image_url = output[0]
|
| 113 |
+
response = requests.get(image_url)
|
| 114 |
+
img2 = Image.open(io.BytesIO(response.content))
|
| 115 |
+
except Exception as e:
|
| 116 |
+
raise gr.Error(f"Second image download failed: {e}")
|
| 117 |
+
|
| 118 |
# Call Stable Diffusion API with the response from OpenAI
|
| 119 |
input = {
|
| 120 |
"width": 768,
|
| 121 |
"height": 768,
|
| 122 |
+
"prompt": "high quality render of " + prompt + ", " + openai_response[12:],
|
| 123 |
"negative_prompt": "worst quality, low quality, illustration, 2d, painting, cartoons, sketch",
|
| 124 |
"refine": "expert_ensemble_refiner",
|
| 125 |
"apply_watermark": False,
|
| 126 |
"num_inference_steps": 25,
|
| 127 |
+
"num_outputs": 2
|
| 128 |
}
|
| 129 |
|
| 130 |
output = replicate.run(
|
| 131 |
"stability-ai/sdxl:7762fd07cf82c948538e41f63f77d685e02b063e37e496e96eefd46c929f9bdc",
|
| 132 |
input=input
|
| 133 |
)
|
| 134 |
+
|
| 135 |
+
images = [img1, img2]
|
| 136 |
+
|
| 137 |
+
for i in range(min(len(output), 2)):
|
| 138 |
+
image_url = output[i]
|
| 139 |
+
response = requests.get(image_url)
|
| 140 |
+
images.append(Image.open(io.BytesIO(response.content)))
|
| 141 |
|
| 142 |
+
# Add empty images if fewer than 3 were returned
|
| 143 |
+
while len(images) < 4:
|
| 144 |
+
images.append(Image.new('RGB', (768, 768), 'gray'))
|
| 145 |
+
|
| 146 |
+
images.reverse()
|
| 147 |
+
return images
|
| 148 |
+
|
| 149 |
+
demo = gr.Interface(fn=image_classifier, inputs=["image", "text"], outputs=["image", "image", "image", "image"])
|
| 150 |
+
demo.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
|
|
|
|
|
|
|
| 153 |
|
|
|
|
|
|
|
| 154 |
|
|
|
|
|
|