Spaces:
Runtime error
Runtime error
| import gc | |
| import os | |
| import traceback | |
| from pathlib import Path | |
| from typing import Dict, List, Literal, Optional, Union | |
| import numpy as np | |
| import torch | |
| from diffusers import AutoencoderTiny | |
| from PIL import Image | |
| from live2diff import StreamAnimateDiffusionDepth | |
| from live2diff.image_utils import postprocess_image | |
| from live2diff.pipeline_stream_animation_depth import WARMUP_FRAMES | |
| class StreamAnimateDiffusionDepthWrapper: | |
| def __init__( | |
| self, | |
| config_path: str, | |
| few_step_model_type: str, | |
| num_inference_steps: int, | |
| t_index_list: Optional[List[int]] = None, | |
| strength: Optional[float] = None, | |
| dreambooth_path: Optional[str] = None, | |
| lora_dict: Optional[Dict[str, float]] = None, | |
| output_type: Literal["pil", "pt", "np", "latent"] = "pil", | |
| vae_id: Optional[str] = None, | |
| device: Literal["cpu", "cuda"] = "cuda", | |
| dtype: torch.dtype = torch.float16, | |
| frame_buffer_size: int = 1, | |
| width: int = 512, | |
| height: int = 512, | |
| acceleration: Literal["none", "xformers", "tensorrt"] = "tensorrt", | |
| do_add_noise: bool = True, | |
| device_ids: Optional[List[int]] = None, | |
| use_tiny_vae: bool = True, | |
| enable_similar_image_filter: bool = False, | |
| similar_image_filter_threshold: float = 0.98, | |
| similar_image_filter_max_skip_frame: int = 10, | |
| use_denoising_batch: bool = True, | |
| cfg_type: Literal["none", "full", "self", "initialize"] = "self", | |
| seed: int = 42, | |
| engine_dir: Optional[Union[str, Path]] = "engines", | |
| opt_unet: bool = False, | |
| ): | |
| """ | |
| Initializes the StreamAnimateDiffusionWrapper. | |
| Parameters | |
| ---------- | |
| config_path : str | |
| The model id or path to load. | |
| few_step_model_type : str | |
| The few step model type to use. | |
| num_inference_steps : int | |
| The number of inference steps to perform. If `t_index_list` | |
| is passed, `num_infernce_steps` will parsed as the number | |
| of denoising steps before apply few-step lora. Otherwise, | |
| `num_inference_steps` will be parsed as the number of | |
| steps after applying few-step lora. | |
| t_index_list : List[int] | |
| The t_index_list to use for inference. | |
| strength : Optional[float] | |
| The strength to use for inference. | |
| dreambooth_path : Optional[str] | |
| The dreambooth path to use for inference. If not passed, | |
| will use dreambooth from config. | |
| lora_dict : Optional[Dict[str, float]], optional | |
| The lora_dict to load, by default None. | |
| Keys are the LoRA names and values are the LoRA scales. | |
| Example: {'LoRA_1' : 0.5 , 'LoRA_2' : 0.7 ,...} | |
| output_type : Literal["pil", "pt", "np", "latent"], optional | |
| The output type of image, by default "pil". | |
| vae_id : Optional[str], optional | |
| The vae_id to load, by default None. | |
| If None, the default TinyVAE | |
| ("madebyollin/taesd") will be used. | |
| device : Literal["cpu", "cuda"], optional | |
| The device to use for inference, by default "cuda". | |
| dtype : torch.dtype, optional | |
| The dtype for inference, by default torch.float16. | |
| frame_buffer_size : int, optional | |
| The frame buffer size for denoising batch, by default 1. | |
| width : int, optional | |
| The width of the image, by default 512. | |
| height : int, optional | |
| The height of the image, by default 512. | |
| acceleration : Literal["none", "xformers", "tensorrt"], optional | |
| The acceleration method, by default "tensorrt". | |
| do_add_noise : bool, optional | |
| Whether to add noise for following denoising steps or not, | |
| by default True. | |
| device_ids : Optional[List[int]], optional | |
| The device ids to use for DataParallel, by default None. | |
| use_lcm_lora : bool, optional | |
| Whether to use LCM-LoRA or not, by default True. | |
| use_tiny_vae : bool, optional | |
| Whether to use TinyVAE or not, by default True. | |
| enable_similar_image_filter : bool, optional | |
| Whether to enable similar image filter or not, | |
| by default False. | |
| similar_image_filter_threshold : float, optional | |
| The threshold for similar image filter, by default 0.98. | |
| similar_image_filter_max_skip_frame : int, optional | |
| The max skip frame for similar image filter, by default 10. | |
| use_denoising_batch : bool, optional | |
| Whether to use denoising batch or not, by default True. | |
| cfg_type : Literal["none", "full", "self", "initialize"], | |
| optional | |
| The cfg_type for img2img mode, by default "self". | |
| You cannot use anything other than "none" for txt2img mode. | |
| seed : int, optional | |
| The seed, by default 42. | |
| engine_dir : Optional[Union[str, Path]], optional | |
| The directory to save TensorRT engines, by default "engines". | |
| opt_unet : bool, optional | |
| Whether to optimize UNet or not, by default False. | |
| """ | |
| self.sd_turbo = False | |
| self.device = device | |
| self.dtype = dtype | |
| self.width = width | |
| self.height = height | |
| self.output_type = output_type | |
| self.frame_buffer_size = frame_buffer_size | |
| self.use_denoising_batch = use_denoising_batch | |
| self.stream: StreamAnimateDiffusionDepth = self._load_model( | |
| config_path=config_path, | |
| lora_dict=lora_dict, | |
| dreambooth_path=dreambooth_path, | |
| few_step_model_type=few_step_model_type, | |
| vae_id=vae_id, | |
| num_inference_steps=num_inference_steps, | |
| t_index_list=t_index_list, | |
| strength=strength, | |
| height=height, | |
| width=width, | |
| acceleration=acceleration, | |
| do_add_noise=do_add_noise, | |
| use_tiny_vae=use_tiny_vae, | |
| cfg_type=cfg_type, | |
| seed=seed, | |
| engine_dir=engine_dir, | |
| opt_unet=opt_unet, | |
| ) | |
| self.batch_size = len(self.stream.t_list) * frame_buffer_size if use_denoising_batch else frame_buffer_size | |
| if device_ids is not None: | |
| self.stream.unet = torch.nn.DataParallel(self.stream.unet, device_ids=device_ids) | |
| if enable_similar_image_filter: | |
| self.stream.enable_similar_image_filter( | |
| similar_image_filter_threshold, similar_image_filter_max_skip_frame | |
| ) | |
| def prepare( | |
| self, | |
| warmup_frames: torch.Tensor, | |
| prompt: str, | |
| negative_prompt: str = "", | |
| guidance_scale: float = 1.2, | |
| delta: float = 1.0, | |
| ) -> torch.Tensor: | |
| """ | |
| Prepares the model for inference. | |
| Parameters | |
| ---------- | |
| prompt : str | |
| The prompt to generate images from. | |
| num_inference_steps : int, optional | |
| The number of inference steps to perform, by default 50. | |
| guidance_scale : float, optional | |
| The guidance scale to use, by default 1.2. | |
| delta : float, optional | |
| The delta multiplier of virtual residual noise, | |
| by default 1.0. | |
| Returns | |
| ---------- | |
| warmup_frames : torch.Tensor | |
| generated warmup-frames. | |
| """ | |
| warmup_frames = self.stream.prepare( | |
| warmup_frames=warmup_frames, | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| guidance_scale=guidance_scale, | |
| delta=delta, | |
| ) | |
| warmup_frames = warmup_frames.permute(0, 2, 3, 1) | |
| warmup_frames = (warmup_frames.clip(-1, 1) + 1) / 2 | |
| return warmup_frames | |
| def __call__( | |
| self, | |
| image: Optional[Union[str, Image.Image, torch.Tensor]] = None, | |
| prompt: Optional[str] = None, | |
| ) -> Union[Image.Image, List[Image.Image]]: | |
| """ | |
| Performs img2img or txt2img based on the mode. | |
| Parameters | |
| ---------- | |
| image : Optional[Union[str, Image.Image, torch.Tensor]] | |
| The image to generate from. | |
| prompt : Optional[str] | |
| The prompt to generate images from. | |
| Returns | |
| ------- | |
| Union[Image.Image, List[Image.Image]] | |
| The generated image. | |
| """ | |
| return self.img2img(image, prompt) | |
| def img2img( | |
| self, image: Union[str, Image.Image, torch.Tensor], prompt: Optional[str] = None | |
| ) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]: | |
| """ | |
| Performs img2img. | |
| Parameters | |
| ---------- | |
| image : Union[str, Image.Image, torch.Tensor] | |
| The image to generate from. | |
| Returns | |
| ------- | |
| Image.Image | |
| The generated image. | |
| """ | |
| if prompt is not None: | |
| self.stream.update_prompt(prompt) | |
| if isinstance(image, str) or isinstance(image, Image.Image): | |
| image = self.preprocess_image(image) | |
| image_tensor = self.stream(image) | |
| image = self.postprocess_image(image_tensor, output_type=self.output_type) | |
| return image | |
| def preprocess_image(self, image: Union[str, Image.Image]) -> torch.Tensor: | |
| """ | |
| Preprocesses the image. | |
| Parameters | |
| ---------- | |
| image : Union[str, Image.Image, torch.Tensor] | |
| The image to preprocess. | |
| Returns | |
| ------- | |
| torch.Tensor | |
| The preprocessed image. | |
| """ | |
| if isinstance(image, str): | |
| image = Image.open(image).convert("RGB").resize((self.width, self.height)) | |
| if isinstance(image, Image.Image): | |
| image = image.convert("RGB").resize((self.width, self.height)) | |
| return self.stream.image_processor.preprocess(image, self.height, self.width).to( | |
| device=self.device, dtype=self.dtype | |
| ) | |
| def postprocess_image( | |
| self, image_tensor: torch.Tensor, output_type: str = "pil" | |
| ) -> Union[Image.Image, List[Image.Image], torch.Tensor, np.ndarray]: | |
| """ | |
| Postprocesses the image. | |
| Parameters | |
| ---------- | |
| image_tensor : torch.Tensor | |
| The image tensor to postprocess. | |
| Returns | |
| ------- | |
| Union[Image.Image, List[Image.Image]] | |
| The postprocessed image. | |
| """ | |
| if self.frame_buffer_size > 1: | |
| output = postprocess_image(image_tensor, output_type=output_type) | |
| else: | |
| output = postprocess_image(image_tensor, output_type=output_type)[0] | |
| if output_type not in ["pil", "np"]: | |
| return output.cpu() | |
| else: | |
| return output | |
| def get_model_prefix( | |
| config_path: str, | |
| few_step_model_type: str, | |
| use_tiny_vae: bool, | |
| num_denoising_steps: int, | |
| height: int, | |
| width: int, | |
| dreambooth: Optional[str] = None, | |
| lora_dict: Optional[dict] = None, | |
| ) -> str: | |
| from omegaconf import OmegaConf | |
| config = OmegaConf.load(config_path) | |
| third_party = config.third_party_dict | |
| dreambooth_path = dreambooth or third_party.dreambooth | |
| if dreambooth_path is None: | |
| dreambooth_name = "sd15" | |
| else: | |
| dreambooth_name = Path(dreambooth_path).stem | |
| base_lora_list = third_party.get("lora_list", []) | |
| lora_dict = lora_dict or {} | |
| for lora_alpha in base_lora_list: | |
| lora_name = lora_alpha["lora"] | |
| alpha = lora_alpha["lora_alpha"] | |
| if lora_name not in lora_dict: | |
| lora_dict[lora_name] = alpha | |
| prefix = f"{dreambooth_name}--{few_step_model_type}--step{num_denoising_steps}--" | |
| for k, v in lora_dict.items(): | |
| prefix += f"{Path(k).stem}-{v}--" | |
| prefix += f"tiny_vae-{use_tiny_vae}--h-{height}--w-{width}" | |
| return prefix | |
| def _load_model( | |
| self, | |
| config_path: str, | |
| num_inference_steps: int, | |
| height: int, | |
| width: int, | |
| t_index_list: Optional[List[int]] = None, | |
| strength: Optional[float] = None, | |
| dreambooth_path: Optional[str] = None, | |
| lora_dict: Optional[Dict[str, float]] = None, | |
| vae_id: Optional[str] = None, | |
| acceleration: Literal["none", "xformers", "tensorrt"] = "tensorrt", | |
| do_add_noise: bool = True, | |
| few_step_model_type: Optional[str] = None, | |
| use_tiny_vae: bool = True, | |
| cfg_type: Literal["none", "full", "self", "initialize"] = "self", | |
| seed: int = 2, | |
| engine_dir: Optional[Union[str, Path]] = "engines", | |
| opt_unet: bool = False, | |
| ) -> StreamAnimateDiffusionDepth: | |
| """ | |
| Loads the model. | |
| This method does the following: | |
| 1. Loads the model from the model_id_or_path. | |
| 3. Loads the VAE model from the vae_id if needed. | |
| 4. Enables acceleration if needed. | |
| 6. Load the safety checker if needed. | |
| Parameters | |
| ---------- | |
| config_path : str | |
| The path to config, all needed checkpoints are list in config file. | |
| t_index_list : List[int] | |
| The t_index_list to use for inference. | |
| dreambooth_path : Optional[str] | |
| The dreambooth path to use for inference. If not passed, | |
| will use dreambooth from config. | |
| lora_dict : Optional[Dict[str, float]], optional | |
| The lora_dict to load, by default None. | |
| Keys are the LoRA names and values are the LoRA scales. | |
| Example: {'LoRA_1' : 0.5 , 'LoRA_2' : 0.7 ,...} | |
| vae_id : Optional[str], optional | |
| The vae_id to load, by default None. | |
| acceleration : Literal["none", "xfomers", "sfast", "tensorrt"], optional | |
| The acceleration method, by default "tensorrt". | |
| warmup : int, optional | |
| The number of warmup steps to perform, by default 10. | |
| do_add_noise : bool, optional | |
| Whether to add noise for following denoising steps or not, | |
| by default True. | |
| use_lcm_lora : bool, optional | |
| Whether to use LCM-LoRA or not, by default True. | |
| use_tiny_vae : bool, optional | |
| Whether to use TinyVAE or not, by default True. | |
| cfg_type : Literal["none", "full", "self", "initialize"], | |
| optional | |
| The cfg_type for img2img mode, by default "self". | |
| You cannot use anything other than "none" for txt2img mode. | |
| seed : int, optional | |
| The seed, by default 2. | |
| opt_unet : bool, optional | |
| Whether to optimize UNet or not, by default False. | |
| Returns | |
| ------- | |
| AnimatePipeline | |
| The loaded pipeline. | |
| """ | |
| supported_few_step_model = ["LCM"] | |
| assert ( | |
| few_step_model_type.upper() in supported_few_step_model | |
| ), f"Only support few_step_model: {supported_few_step_model}, but receive {few_step_model_type}." | |
| # NOTE: build animatediff pipeline | |
| from live2diff.animatediff.pipeline import AnimationDepthPipeline | |
| try: | |
| pipe = AnimationDepthPipeline.build_pipeline( | |
| config_path, | |
| ).to(device=self.device, dtype=self.dtype) | |
| except Exception: # No model found | |
| traceback.print_exc() | |
| print("Model load has failed. Doesn't exist.") | |
| exit() | |
| if few_step_model_type.upper() == "LCM": | |
| few_step_lora = "latent-consistency/lcm-lora-sdv1-5" | |
| stream_pipeline_cls = StreamAnimateDiffusionDepth | |
| print(f"Pipeline class: {stream_pipeline_cls}") | |
| print(f"Few-step LoRA: {few_step_lora}") | |
| # parse clip skip from config | |
| from .config import load_config | |
| cfg = load_config(config_path) | |
| third_party_dict = cfg.third_party_dict | |
| clip_skip = third_party_dict.get("clip_skip", 1) | |
| stream = stream_pipeline_cls( | |
| pipe=pipe, | |
| num_inference_steps=num_inference_steps, | |
| t_index_list=t_index_list, | |
| strength=strength, | |
| torch_dtype=self.dtype, | |
| width=self.width, | |
| height=self.height, | |
| do_add_noise=do_add_noise, | |
| frame_buffer_size=self.frame_buffer_size, | |
| use_denoising_batch=self.use_denoising_batch, | |
| cfg_type=cfg_type, | |
| clip_skip=clip_skip, | |
| ) | |
| stream.load_warmup_unet(config_path) | |
| stream.load_lora(few_step_lora) | |
| stream.fuse_lora() | |
| denoising_steps_num = len(stream.t_list) | |
| stream.prepare_cache( | |
| height=height, | |
| width=width, | |
| denoising_steps_num=denoising_steps_num, | |
| ) | |
| kv_cache_list = stream.kv_cache_list | |
| if lora_dict is not None: | |
| for lora_name, lora_scale in lora_dict.items(): | |
| stream.load_lora(lora_name) | |
| stream.fuse_lora(lora_scale=lora_scale) | |
| print(f"Use LoRA: {lora_name} in weights {lora_scale}") | |
| if use_tiny_vae: | |
| vae_id = "madebyollin/taesd" if vae_id is None else vae_id | |
| stream.vae = AutoencoderTiny.from_pretrained(vae_id).to(device=pipe.device, dtype=pipe.dtype) | |
| try: | |
| if acceleration == "none": | |
| stream.pipe.unet = torch.compile(stream.pipe.unet, options={"triton.cudagraphs": True}, fullgraph=True) | |
| stream.vae = torch.compile(stream.vae, options={"triton.cudagraphs": True}, fullgraph=True) | |
| if acceleration == "xformers": | |
| stream.pipe.enable_xformers_memory_efficient_attention() | |
| if acceleration == "tensorrt": | |
| from polygraphy import cuda | |
| from live2diff.acceleration.tensorrt import ( | |
| TorchVAEEncoder, | |
| compile_engine, | |
| ) | |
| from live2diff.acceleration.tensorrt.engine import ( | |
| AutoencoderKLEngine, | |
| MidasEngine, | |
| UNet2DConditionModelDepthEngine, | |
| ) | |
| from live2diff.acceleration.tensorrt.models import ( | |
| VAE, | |
| InflatedUNetDepth, | |
| Midas, | |
| VAEEncoder, | |
| ) | |
| prefix = self.get_model_prefix( | |
| config_path=config_path, | |
| few_step_model_type=few_step_model_type, | |
| use_tiny_vae=use_tiny_vae, | |
| num_denoising_steps=denoising_steps_num, | |
| height=height, | |
| width=width, | |
| dreambooth=dreambooth_path, | |
| lora_dict=lora_dict, | |
| ) | |
| engine_dir = os.path.join(Path(engine_dir), prefix) | |
| unet_path = os.path.join(engine_dir, "unet", "unet.engine") | |
| unet_opt_path = os.path.join(engine_dir, "unet-opt", "unet.engine.opt") | |
| midas_path = os.path.join(engine_dir, "depth", "midas.engine") | |
| vae_encoder_path = os.path.join(engine_dir, "vae", "vae_encoder.engine") | |
| vae_decoder_path = os.path.join(engine_dir, "vae", "vae_decoder.engine") | |
| if not os.path.exists(unet_path): | |
| os.makedirs(os.path.dirname(unet_path), exist_ok=True) | |
| os.makedirs(os.path.dirname(unet_opt_path), exist_ok=True) | |
| unet_model = InflatedUNetDepth( | |
| fp16=True, | |
| device=stream.device, | |
| max_batch_size=stream.trt_unet_batch_size, | |
| min_batch_size=stream.trt_unet_batch_size, | |
| embedding_dim=stream.text_encoder.config.hidden_size, | |
| unet_dim=stream.unet.config.in_channels, | |
| kv_cache_list=kv_cache_list, | |
| ) | |
| compile_engine( | |
| torch_model=stream.unet, | |
| model_data=unet_model, | |
| onnx_path=unet_path + ".onnx", | |
| onnx_opt_path=unet_opt_path, # use specific folder for external data | |
| engine_path=unet_path, | |
| opt_image_height=height, | |
| opt_image_width=width, | |
| opt_batch_size=stream.trt_unet_batch_size, | |
| engine_build_options={"ignore_onnx_optimize": not opt_unet}, | |
| ) | |
| if not os.path.exists(vae_decoder_path): | |
| os.makedirs(os.path.dirname(vae_decoder_path), exist_ok=True) | |
| stream.vae.forward = stream.vae.decode | |
| max_bz = WARMUP_FRAMES | |
| opt_bz = min_bz = 1 | |
| vae_decoder_model = VAE( | |
| device=stream.device, | |
| max_batch_size=max_bz, | |
| min_batch_size=min_bz, | |
| ) | |
| compile_engine( | |
| torch_model=stream.vae, | |
| model_data=vae_decoder_model, | |
| onnx_path=vae_decoder_path + ".onnx", | |
| onnx_opt_path=vae_decoder_path + ".opt.onnx", | |
| engine_path=vae_decoder_path, | |
| opt_image_height=height, | |
| opt_image_width=width, | |
| opt_batch_size=opt_bz, | |
| ) | |
| delattr(stream.vae, "forward") | |
| if not os.path.exists(midas_path): | |
| os.makedirs(os.path.dirname(midas_path), exist_ok=True) | |
| max_bz = WARMUP_FRAMES | |
| opt_bz = min_bz = 1 | |
| midas = Midas( | |
| fp16=True, | |
| device=stream.device, | |
| max_batch_size=max_bz, | |
| min_batch_size=min_bz, | |
| ) | |
| compile_engine( | |
| torch_model=stream.depth_detector.half(), | |
| model_data=midas, | |
| onnx_path=midas_path + ".onnx", | |
| onnx_opt_path=midas_path + ".opt.onnx", | |
| engine_path=midas_path, | |
| opt_batch_size=opt_bz, | |
| opt_image_height=384, | |
| opt_image_width=384, | |
| engine_build_options={ | |
| "auto_cast": False, | |
| "handle_batch_norm": True, | |
| "ignore_onnx_optimize": True, | |
| }, | |
| ) | |
| if not os.path.exists(vae_encoder_path): | |
| os.makedirs(os.path.dirname(vae_encoder_path), exist_ok=True) | |
| vae_encoder = TorchVAEEncoder(stream.vae).to(torch.device("cuda")) | |
| max_bz = WARMUP_FRAMES | |
| opt_bz = min_bz = 1 | |
| vae_encoder_model = VAEEncoder( | |
| device=stream.device, | |
| max_batch_size=max_bz, | |
| min_batch_size=min_bz, | |
| ) | |
| compile_engine( | |
| torch_model=vae_encoder, | |
| model_data=vae_encoder_model, | |
| onnx_path=vae_encoder_path + ".onnx", | |
| onnx_opt_path=vae_encoder_path + ".opt.onnx", | |
| engine_path=vae_encoder_path, | |
| opt_batch_size=opt_bz, | |
| opt_image_height=height, | |
| opt_image_width=width, | |
| ) | |
| cuda_stream = cuda.Stream() | |
| vae_config = stream.vae.config | |
| vae_dtype = stream.vae.dtype | |
| midas_dtype = stream.depth_detector.dtype | |
| stream.unet = UNet2DConditionModelDepthEngine(unet_path, cuda_stream, use_cuda_graph=False) | |
| stream.depth_detector = MidasEngine(midas_path, cuda_stream, use_cuda_graph=False) | |
| setattr(stream.depth_detector, "dtype", midas_dtype) | |
| stream.vae = AutoencoderKLEngine( | |
| vae_encoder_path, | |
| vae_decoder_path, | |
| cuda_stream, | |
| stream.pipe.vae_scale_factor, | |
| use_cuda_graph=False, | |
| ) | |
| setattr(stream.vae, "config", vae_config) | |
| setattr(stream.vae, "dtype", vae_dtype) | |
| stream.is_tensorrt = True | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| print("TensorRT acceleration enabled.") | |
| except Exception: | |
| traceback.print_exc() | |
| print("Acceleration has failed. Falling back to normal mode.") | |
| if seed < 0: # Random seed | |
| seed = np.random.randint(0, 1000000) | |
| return stream | |