Spaces:
Build error
Build error
Commit
·
fffd326
0
Parent(s):
Duplicate from ljsabc/Fujisaki
Browse filesCo-authored-by: Miaomiao Li <[email protected]>
- .gitattributes +34 -0
- README.md +14 -0
- app.py +135 -0
- configuration_chatglm.py +92 -0
- modeling_chatglm.py +1264 -0
- requirements.txt +20 -0
.gitattributes
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Fujisaki
|
| 3 |
+
emoji: 💻
|
| 4 |
+
colorFrom: green
|
| 5 |
+
colorTo: pink
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 3.23.0
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: ljsabc/Fujisaki
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""Fujisaki_CPU.ipynb
|
| 3 |
+
|
| 4 |
+
Automatically generated by Colaboratory.
|
| 5 |
+
|
| 6 |
+
Original file is located at
|
| 7 |
+
https://colab.research.google.com/drive/1Damnr0Ha4zZAlKFvne9cu76uuElLNYus
|
| 8 |
+
|
| 9 |
+
李萌萌的电子骨灰盒
|
| 10 |
+
----
|
| 11 |
+
|
| 12 |
+
这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以在问题栏目填入内容,或者什么都不填,来观察李萌萌到底会说些什么。
|
| 13 |
+
T4级别的GPU已经可以很胜任这个任务了。
|
| 14 |
+
|
| 15 |
+
### 安装依赖
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
from modeling_chatglm import ChatGLMForConditionalGeneration
|
| 19 |
+
import torch
|
| 20 |
+
import sys
|
| 21 |
+
|
| 22 |
+
from transformers import AutoTokenizer, GenerationConfig
|
| 23 |
+
|
| 24 |
+
model = ChatGLMForConditionalGeneration.from_pretrained("THUDM/chatglm-6b").float()
|
| 25 |
+
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
| 26 |
+
|
| 27 |
+
from peft import get_peft_model, LoraConfig, TaskType, PeftModel
|
| 28 |
+
peft_path = 'ljsabc/Fujisaki_GLM' # change it to your own
|
| 29 |
+
model = PeftModel.from_pretrained(
|
| 30 |
+
model,
|
| 31 |
+
peft_path,
|
| 32 |
+
torch_dtype=torch.float,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# dump a log to ensure everything works well
|
| 36 |
+
print(model.peft_config)
|
| 37 |
+
# We have to use full precision, as some tokens are >65535
|
| 38 |
+
model.eval()
|
| 39 |
+
|
| 40 |
+
torch.set_default_tensor_type(torch.FloatTensor)
|
| 41 |
+
def evaluate(context, temperature, top_p, top_k):
|
| 42 |
+
generation_config = GenerationConfig(
|
| 43 |
+
temperature=temperature,
|
| 44 |
+
top_p=top_p,
|
| 45 |
+
top_k=top_k,
|
| 46 |
+
#repetition_penalty=1.1,
|
| 47 |
+
num_beams=1,
|
| 48 |
+
do_sample=True,
|
| 49 |
+
)
|
| 50 |
+
with torch.no_grad():
|
| 51 |
+
input_text = f"Context: {context}Answer: "
|
| 52 |
+
ids = tokenizer.encode(input_text)
|
| 53 |
+
input_ids = torch.LongTensor([ids]).to('cpu')
|
| 54 |
+
out = model.generate(
|
| 55 |
+
input_ids=input_ids,
|
| 56 |
+
max_length=160,
|
| 57 |
+
generation_config=generation_config
|
| 58 |
+
)
|
| 59 |
+
out_text = tokenizer.decode(out[0]).split("Answer: ")[1]
|
| 60 |
+
return out_text
|
| 61 |
+
|
| 62 |
+
def evaluate_stream(msg, history, temperature, top_p):
|
| 63 |
+
generation_config = GenerationConfig(
|
| 64 |
+
temperature=temperature,
|
| 65 |
+
top_p=top_p,
|
| 66 |
+
#repetition_penalty=1.1,
|
| 67 |
+
num_beams=1,
|
| 68 |
+
do_sample=True,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
history.append([msg, None])
|
| 72 |
+
|
| 73 |
+
context = ""
|
| 74 |
+
if len(history) > 4:
|
| 75 |
+
history.pop(0)
|
| 76 |
+
|
| 77 |
+
for j in range(len(history)):
|
| 78 |
+
history[j][0] = history[j][0].replace("<br>", "")
|
| 79 |
+
|
| 80 |
+
# concatenate context
|
| 81 |
+
for h in history[:-1]:
|
| 82 |
+
context += h[0] + "||" + h[1] + "||"
|
| 83 |
+
|
| 84 |
+
context += history[-1][0]
|
| 85 |
+
context = context.replace(r'<br>', '')
|
| 86 |
+
|
| 87 |
+
# TODO: Avoid the tokens are too long.
|
| 88 |
+
CUTOFF = 224
|
| 89 |
+
while len(tokenizer.encode(context)) > CUTOFF:
|
| 90 |
+
# save 15 token size for the answer
|
| 91 |
+
context = context[15:]
|
| 92 |
+
|
| 93 |
+
h = []
|
| 94 |
+
print("History:", history)
|
| 95 |
+
print("Context:", context)
|
| 96 |
+
for response, h in model.stream_chat(tokenizer, context, h, max_length=CUTOFF, top_p=top_p, temperature=temperature):
|
| 97 |
+
history[-1][1] = response
|
| 98 |
+
yield history, ""
|
| 99 |
+
|
| 100 |
+
#return response
|
| 101 |
+
|
| 102 |
+
import gradio as gr
|
| 103 |
+
|
| 104 |
+
title = """<h1 align="center">李萌萌(Alter Ego)</h1>
|
| 105 |
+
<h3 align='center'>这是一个通过ChatGLM模型训练的李萌萌的数字分身,你可以与她聊天,或者直接在文本框按下Enter,来观察李萌萌到底会说些什么。</h3>
|
| 106 |
+
<p align='center'>可能是因为数据的原因,相比于提问,陈述性的上下文更容易跑出更好的结果。</p>"""
|
| 107 |
+
|
| 108 |
+
footer = """<p align='center'>项目在<a href='https://github.com/ljsabc/Fujisaki' target='_blank'>GitHub</a>上托管,基于清华的<a href='https://huggingface.co/THUDM/chatglm-6b' target='_blank'>THUDM/chatglm-6b</a>项目。</p>
|
| 109 |
+
<p align='center'><em>"I'm... a boy." --Chihiro Fujisaki</em></p>"""
|
| 110 |
+
|
| 111 |
+
with gr.Blocks() as demo:
|
| 112 |
+
gr.HTML(title)
|
| 113 |
+
state = gr.State()
|
| 114 |
+
with gr.Row():
|
| 115 |
+
with gr.Column(scale=2):
|
| 116 |
+
temp = gr.components.Slider(minimum=0, maximum=1.1, value=0.8, label="Temperature",
|
| 117 |
+
info="温度参数,越高的温度生成的内容越丰富,但是有可能出现语法问题。小的温度也能帮助生成更相关的回答。")
|
| 118 |
+
top_p = gr.components.Slider(minimum=0.5, maximum=1.0, value=0.975, label="Top-p",
|
| 119 |
+
info="top-p参数,只输出前p>top-p的文字,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
|
| 120 |
+
#code = gr.Textbox(label="temp_output", info="解码器输出")
|
| 121 |
+
#top_k = gr.components.Slider(minimum=1, maximum=200, step=1, value=25, label="Top k",
|
| 122 |
+
# info="top-k参数,下一个输出的文字会从top-k个文字中进行选择,越大生成的内容越丰富,但也可能出现语法问题。数字越小似乎上下文的衔接性越好。")
|
| 123 |
+
|
| 124 |
+
with gr.Column(scale=3):
|
| 125 |
+
chatbot = gr.Chatbot(label="聊天框", info="")
|
| 126 |
+
msg = gr.Textbox(label="输入框", placeholder="最近过得怎么样?",
|
| 127 |
+
info="输入你的内容,按[Enter]发送。也可以什么都不填写生成随机数据。对话一般不能太长,否则就复读机了,建议清除数据。")
|
| 128 |
+
clear = gr.Button("清除聊天")
|
| 129 |
+
|
| 130 |
+
msg.submit(evaluate_stream, [msg, chatbot, temp, top_p], [chatbot, msg])
|
| 131 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 132 |
+
gr.HTML(footer)
|
| 133 |
+
|
| 134 |
+
demo.queue()
|
| 135 |
+
demo.launch(debug=False)
|
configuration_chatglm.py
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" ChatGLM model configuration """
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.utils import logging
|
| 5 |
+
|
| 6 |
+
logger = logging.get_logger(__name__)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class ChatGLMConfig(PretrainedConfig):
|
| 10 |
+
r"""
|
| 11 |
+
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
| 12 |
+
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
| 13 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
| 14 |
+
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
| 15 |
+
|
| 16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
| 17 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
| 18 |
+
for more information.
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
vocab_size (`int`, *optional*, defaults to 150528):
|
| 23 |
+
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
| 24 |
+
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
| 25 |
+
[`~TFChatGLMModel`].
|
| 26 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 27 |
+
Dimension of the encoder layers and the pooler layer.
|
| 28 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
| 29 |
+
Number of hidden layers in the Transformer encoder.
|
| 30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 32 |
+
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
| 33 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 34 |
+
max_sequence_length (`int`, *optional*, defaults to 512):
|
| 35 |
+
The maximum sequence length that this model might ever be used with.
|
| 36 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
| 37 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
| 38 |
+
The epsilon used by the layer normalization layers.
|
| 39 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 40 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
| 41 |
+
Example:
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
>>> from configuration_chatglm import ChatGLMConfig
|
| 45 |
+
>>> from modeling_chatglm import ChatGLMModel
|
| 46 |
+
|
| 47 |
+
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
| 48 |
+
>>> configuration = ChatGLMConfig()
|
| 49 |
+
|
| 50 |
+
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
| 51 |
+
>>> model = ChatGLMModel(configuration)
|
| 52 |
+
|
| 53 |
+
>>> # Accessing the model configuration
|
| 54 |
+
>>> configuration = model.config
|
| 55 |
+
```
|
| 56 |
+
"""
|
| 57 |
+
model_type = "chatglm"
|
| 58 |
+
|
| 59 |
+
def __init__(
|
| 60 |
+
self,
|
| 61 |
+
vocab_size=150528,
|
| 62 |
+
hidden_size=4096,
|
| 63 |
+
num_layers=28,
|
| 64 |
+
num_attention_heads=32,
|
| 65 |
+
layernorm_epsilon=1e-5,
|
| 66 |
+
use_cache=False,
|
| 67 |
+
bos_token_id=150004,
|
| 68 |
+
eos_token_id=150005,
|
| 69 |
+
pad_token_id=0,
|
| 70 |
+
max_sequence_length=2048,
|
| 71 |
+
inner_hidden_size=16384,
|
| 72 |
+
position_encoding_2d=True,
|
| 73 |
+
**kwargs
|
| 74 |
+
):
|
| 75 |
+
self.num_layers = num_layers
|
| 76 |
+
self.vocab_size = vocab_size
|
| 77 |
+
self.hidden_size = hidden_size
|
| 78 |
+
self.num_attention_heads = num_attention_heads
|
| 79 |
+
self.max_sequence_length = max_sequence_length
|
| 80 |
+
self.layernorm_epsilon = layernorm_epsilon
|
| 81 |
+
self.inner_hidden_size = inner_hidden_size
|
| 82 |
+
self.use_cache = use_cache
|
| 83 |
+
self.bos_token_id = bos_token_id
|
| 84 |
+
self.eos_token_id = eos_token_id
|
| 85 |
+
self.pad_token_id = pad_token_id
|
| 86 |
+
self.position_encoding_2d = position_encoding_2d
|
| 87 |
+
super().__init__(
|
| 88 |
+
pad_token_id=pad_token_id,
|
| 89 |
+
bos_token_id=bos_token_id,
|
| 90 |
+
eos_token_id=eos_token_id,
|
| 91 |
+
**kwargs
|
| 92 |
+
)
|
modeling_chatglm.py
ADDED
|
@@ -0,0 +1,1264 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
""" PyTorch ChatGLM model. """
|
| 2 |
+
|
| 3 |
+
import math
|
| 4 |
+
import copy
|
| 5 |
+
import os
|
| 6 |
+
import warnings
|
| 7 |
+
import re
|
| 8 |
+
import sys
|
| 9 |
+
|
| 10 |
+
import torch
|
| 11 |
+
import torch.utils.checkpoint
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
from torch import nn
|
| 14 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
| 15 |
+
from torch.nn.utils import skip_init
|
| 16 |
+
from typing import Optional, Tuple, Union, List, Callable
|
| 17 |
+
|
| 18 |
+
from transformers.utils import (
|
| 19 |
+
add_code_sample_docstrings,
|
| 20 |
+
add_start_docstrings,
|
| 21 |
+
add_start_docstrings_to_model_forward,
|
| 22 |
+
)
|
| 23 |
+
from transformers.modeling_outputs import (
|
| 24 |
+
BaseModelOutputWithPast,
|
| 25 |
+
CausalLMOutputWithPast,
|
| 26 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 27 |
+
)
|
| 28 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 29 |
+
from transformers.utils import logging
|
| 30 |
+
from transformers.generation.logits_process import LogitsProcessor
|
| 31 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig
|
| 32 |
+
|
| 33 |
+
from configuration_chatglm import ChatGLMConfig
|
| 34 |
+
|
| 35 |
+
# flags required to enable jit fusion kernels
|
| 36 |
+
|
| 37 |
+
if sys.platform != 'darwin':
|
| 38 |
+
torch._C._jit_set_profiling_mode(False)
|
| 39 |
+
torch._C._jit_set_profiling_executor(False)
|
| 40 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
| 41 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
| 42 |
+
|
| 43 |
+
logger = logging.get_logger(__name__)
|
| 44 |
+
|
| 45 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
| 46 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
| 47 |
+
|
| 48 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 49 |
+
"THUDM/chatglm-6b",
|
| 50 |
+
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
| 55 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
| 56 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
| 57 |
+
scores.zero_()
|
| 58 |
+
scores[..., 20005] = 5e4
|
| 59 |
+
return scores
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
| 63 |
+
"""Load tf checkpoints in a pytorch model."""
|
| 64 |
+
try:
|
| 65 |
+
import re
|
| 66 |
+
|
| 67 |
+
import numpy as np
|
| 68 |
+
import tensorflow as tf
|
| 69 |
+
except ImportError:
|
| 70 |
+
logger.error(
|
| 71 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
| 72 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
| 73 |
+
)
|
| 74 |
+
raise
|
| 75 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
| 76 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
| 77 |
+
# Load weights from TF model
|
| 78 |
+
init_vars = tf.train.list_variables(tf_path)
|
| 79 |
+
names = []
|
| 80 |
+
arrays = []
|
| 81 |
+
for name, shape in init_vars:
|
| 82 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
| 83 |
+
array = tf.train.load_variable(tf_path, name)
|
| 84 |
+
names.append(name)
|
| 85 |
+
arrays.append(array)
|
| 86 |
+
|
| 87 |
+
for name, array in zip(names, arrays):
|
| 88 |
+
name = name.split("/")
|
| 89 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
| 90 |
+
# which are not required for using pretrained model
|
| 91 |
+
if any(
|
| 92 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
| 93 |
+
for n in name
|
| 94 |
+
):
|
| 95 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 96 |
+
continue
|
| 97 |
+
pointer = model
|
| 98 |
+
for m_name in name:
|
| 99 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
| 100 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
| 101 |
+
else:
|
| 102 |
+
scope_names = [m_name]
|
| 103 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
| 104 |
+
pointer = getattr(pointer, "weight")
|
| 105 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
| 106 |
+
pointer = getattr(pointer, "bias")
|
| 107 |
+
elif scope_names[0] == "output_weights":
|
| 108 |
+
pointer = getattr(pointer, "weight")
|
| 109 |
+
elif scope_names[0] == "squad":
|
| 110 |
+
pointer = getattr(pointer, "classifier")
|
| 111 |
+
else:
|
| 112 |
+
try:
|
| 113 |
+
pointer = getattr(pointer, scope_names[0])
|
| 114 |
+
except AttributeError:
|
| 115 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
| 116 |
+
continue
|
| 117 |
+
if len(scope_names) >= 2:
|
| 118 |
+
num = int(scope_names[1])
|
| 119 |
+
pointer = pointer[num]
|
| 120 |
+
if m_name[-11:] == "_embeddings":
|
| 121 |
+
pointer = getattr(pointer, "weight")
|
| 122 |
+
elif m_name == "kernel":
|
| 123 |
+
array = np.transpose(array)
|
| 124 |
+
try:
|
| 125 |
+
assert (
|
| 126 |
+
pointer.shape == array.shape
|
| 127 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
| 128 |
+
except AssertionError as e:
|
| 129 |
+
e.args += (pointer.shape, array.shape)
|
| 130 |
+
raise
|
| 131 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
| 132 |
+
pointer.data = torch.from_numpy(array)
|
| 133 |
+
return model
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
@torch.jit.script
|
| 137 |
+
def gelu_impl(x):
|
| 138 |
+
"""OpenAI's gelu implementation."""
|
| 139 |
+
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
| 140 |
+
(1.0 + 0.044715 * x * x)))
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def gelu(x):
|
| 144 |
+
return gelu_impl(x)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 148 |
+
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
| 149 |
+
super().__init__()
|
| 150 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 151 |
+
inv_freq = inv_freq.half()
|
| 152 |
+
self.learnable = learnable
|
| 153 |
+
if learnable:
|
| 154 |
+
self.inv_freq = torch.nn.Parameter(inv_freq)
|
| 155 |
+
self.max_seq_len_cached = None
|
| 156 |
+
else:
|
| 157 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 158 |
+
self.max_seq_len_cached = None
|
| 159 |
+
self.cos_cached = None
|
| 160 |
+
self.sin_cached = None
|
| 161 |
+
self.precision = precision
|
| 162 |
+
|
| 163 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
| 164 |
+
error_msgs):
|
| 165 |
+
pass
|
| 166 |
+
|
| 167 |
+
def forward(self, x, seq_dim=1, seq_len=None):
|
| 168 |
+
if seq_len is None:
|
| 169 |
+
seq_len = x.shape[seq_dim]
|
| 170 |
+
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
| 171 |
+
self.max_seq_len_cached = None if self.learnable else seq_len
|
| 172 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
| 173 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
| 174 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 175 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
| 176 |
+
if self.precision == torch.bfloat16:
|
| 177 |
+
emb = emb.float()
|
| 178 |
+
|
| 179 |
+
# [sx, 1 (b * np), hn]
|
| 180 |
+
cos_cached = emb.cos()[:, None, :]
|
| 181 |
+
sin_cached = emb.sin()[:, None, :]
|
| 182 |
+
if self.precision == torch.bfloat16:
|
| 183 |
+
cos_cached = cos_cached.bfloat16()
|
| 184 |
+
sin_cached = sin_cached.bfloat16()
|
| 185 |
+
if self.learnable:
|
| 186 |
+
return cos_cached, sin_cached
|
| 187 |
+
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
| 188 |
+
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def rotate_half(x):
|
| 192 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
| 193 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
@torch.jit.script
|
| 197 |
+
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
| 198 |
+
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
| 199 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
| 200 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
| 201 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
| 202 |
+
return q, k
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def attention_fn(
|
| 206 |
+
self,
|
| 207 |
+
query_layer,
|
| 208 |
+
key_layer,
|
| 209 |
+
value_layer,
|
| 210 |
+
attention_mask,
|
| 211 |
+
hidden_size_per_partition,
|
| 212 |
+
layer_id,
|
| 213 |
+
layer_past=None,
|
| 214 |
+
scaling_attention_score=True,
|
| 215 |
+
use_cache=False,
|
| 216 |
+
):
|
| 217 |
+
if layer_past is not None:
|
| 218 |
+
past_key, past_value = layer_past
|
| 219 |
+
key_layer = torch.cat((past_key, key_layer), dim=0)
|
| 220 |
+
value_layer = torch.cat((past_value, value_layer), dim=0)
|
| 221 |
+
|
| 222 |
+
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
| 223 |
+
seq_len, b, nh, hidden_size = key_layer.shape
|
| 224 |
+
|
| 225 |
+
if use_cache:
|
| 226 |
+
present = (key_layer, value_layer)
|
| 227 |
+
else:
|
| 228 |
+
present = None
|
| 229 |
+
|
| 230 |
+
query_key_layer_scaling_coeff = float(layer_id + 1)
|
| 231 |
+
if scaling_attention_score:
|
| 232 |
+
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
| 233 |
+
|
| 234 |
+
# ===================================
|
| 235 |
+
# Raw attention scores. [b, np, s, s]
|
| 236 |
+
# ===================================
|
| 237 |
+
|
| 238 |
+
# [b, np, sq, sk]
|
| 239 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
| 240 |
+
|
| 241 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
| 242 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
| 243 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
| 244 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
| 245 |
+
|
| 246 |
+
matmul_result = torch.empty(
|
| 247 |
+
output_size[0] * output_size[1],
|
| 248 |
+
output_size[2],
|
| 249 |
+
output_size[3],
|
| 250 |
+
dtype=query_layer.dtype,
|
| 251 |
+
device=query_layer.device,
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
matmul_result = torch.baddbmm(
|
| 255 |
+
matmul_result,
|
| 256 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
| 257 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
| 258 |
+
beta=0.0,
|
| 259 |
+
alpha=1.0,
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
+
# change view to [b, np, sq, sk]
|
| 263 |
+
attention_scores = matmul_result.view(*output_size)
|
| 264 |
+
|
| 265 |
+
if self.scale_mask_softmax:
|
| 266 |
+
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
| 267 |
+
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
| 268 |
+
else:
|
| 269 |
+
if not (attention_mask == 0).all():
|
| 270 |
+
# if auto-regressive, skip
|
| 271 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
| 272 |
+
dtype = attention_scores.dtype
|
| 273 |
+
attention_scores = attention_scores.float()
|
| 274 |
+
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
| 275 |
+
|
| 276 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
| 277 |
+
|
| 278 |
+
attention_probs = attention_probs.type(dtype)
|
| 279 |
+
|
| 280 |
+
# =========================
|
| 281 |
+
# Context layer. [sq, b, hp]
|
| 282 |
+
# =========================
|
| 283 |
+
|
| 284 |
+
# value_layer -> context layer.
|
| 285 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
| 286 |
+
|
| 287 |
+
# context layer shape: [b, np, sq, hn]
|
| 288 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
| 289 |
+
|
| 290 |
+
# change view [sk, b * np, hn]
|
| 291 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
| 292 |
+
|
| 293 |
+
# change view [b * np, sq, sk]
|
| 294 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
| 295 |
+
|
| 296 |
+
# matmul: [b * np, sq, hn]
|
| 297 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
| 298 |
+
|
| 299 |
+
# change view [b, np, sq, hn]
|
| 300 |
+
context_layer = context_layer.view(*output_size)
|
| 301 |
+
|
| 302 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
| 303 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
| 304 |
+
|
| 305 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
| 306 |
+
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
| 307 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
| 308 |
+
|
| 309 |
+
outputs = (context_layer, present, attention_probs)
|
| 310 |
+
|
| 311 |
+
return outputs
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class SelfAttention(torch.nn.Module):
|
| 315 |
+
def __init__(self, hidden_size, num_attention_heads,
|
| 316 |
+
layer_id, hidden_size_per_attention_head=None, bias=True,
|
| 317 |
+
params_dtype=torch.float, position_encoding_2d=True):
|
| 318 |
+
super(SelfAttention, self).__init__()
|
| 319 |
+
|
| 320 |
+
self.layer_id = layer_id
|
| 321 |
+
self.hidden_size = hidden_size
|
| 322 |
+
self.hidden_size_per_partition = hidden_size
|
| 323 |
+
self.num_attention_heads = num_attention_heads
|
| 324 |
+
self.num_attention_heads_per_partition = num_attention_heads
|
| 325 |
+
self.position_encoding_2d = position_encoding_2d
|
| 326 |
+
self.rotary_emb = RotaryEmbedding(
|
| 327 |
+
self.hidden_size // (self.num_attention_heads * 2)
|
| 328 |
+
if position_encoding_2d
|
| 329 |
+
else self.hidden_size // self.num_attention_heads,
|
| 330 |
+
base=10000,
|
| 331 |
+
precision=torch.half,
|
| 332 |
+
learnable=False,
|
| 333 |
+
)
|
| 334 |
+
|
| 335 |
+
self.scale_mask_softmax = None
|
| 336 |
+
|
| 337 |
+
if hidden_size_per_attention_head is None:
|
| 338 |
+
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
| 339 |
+
else:
|
| 340 |
+
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
| 341 |
+
|
| 342 |
+
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
| 343 |
+
|
| 344 |
+
# Strided linear layer.
|
| 345 |
+
self.query_key_value = skip_init(
|
| 346 |
+
torch.nn.Linear,
|
| 347 |
+
hidden_size,
|
| 348 |
+
3 * self.inner_hidden_size,
|
| 349 |
+
bias=bias,
|
| 350 |
+
dtype=params_dtype,
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
self.dense = skip_init(
|
| 354 |
+
torch.nn.Linear,
|
| 355 |
+
self.inner_hidden_size,
|
| 356 |
+
hidden_size,
|
| 357 |
+
bias=bias,
|
| 358 |
+
dtype=params_dtype,
|
| 359 |
+
)
|
| 360 |
+
|
| 361 |
+
@staticmethod
|
| 362 |
+
def attention_mask_func(attention_scores, attention_mask):
|
| 363 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
| 364 |
+
return attention_scores
|
| 365 |
+
|
| 366 |
+
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
| 367 |
+
contiguous_split_chunks=False):
|
| 368 |
+
"""Split a tensor along its last dimension.
|
| 369 |
+
Arguments:
|
| 370 |
+
tensor: input tensor.
|
| 371 |
+
num_partitions: number of partitions to split the tensor
|
| 372 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
| 373 |
+
in memory.
|
| 374 |
+
"""
|
| 375 |
+
# Get the size and dimension.
|
| 376 |
+
last_dim = tensor.dim() - 1
|
| 377 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
| 378 |
+
# Split.
|
| 379 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
| 380 |
+
# Note: torch.split does not create contiguous tensors by default.
|
| 381 |
+
if contiguous_split_chunks:
|
| 382 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
| 383 |
+
|
| 384 |
+
return tensor_list
|
| 385 |
+
|
| 386 |
+
def forward(
|
| 387 |
+
self,
|
| 388 |
+
hidden_states: torch.Tensor,
|
| 389 |
+
position_ids,
|
| 390 |
+
attention_mask: torch.Tensor,
|
| 391 |
+
layer_id,
|
| 392 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 393 |
+
use_cache: bool = False,
|
| 394 |
+
output_attentions: bool = False,
|
| 395 |
+
):
|
| 396 |
+
"""
|
| 397 |
+
hidden_states: [seq_len, batch, hidden_size]
|
| 398 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
| 399 |
+
"""
|
| 400 |
+
|
| 401 |
+
# [seq_len, batch, 3 * hidden_size]
|
| 402 |
+
mixed_raw_layer = self.query_key_value(hidden_states)
|
| 403 |
+
|
| 404 |
+
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
| 405 |
+
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
| 406 |
+
self.num_attention_heads_per_partition,
|
| 407 |
+
3 * self.hidden_size_per_attention_head,
|
| 408 |
+
)
|
| 409 |
+
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
| 410 |
+
|
| 411 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
| 412 |
+
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
| 413 |
+
|
| 414 |
+
if self.position_encoding_2d:
|
| 415 |
+
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
| 416 |
+
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
| 417 |
+
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
| 418 |
+
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
| 419 |
+
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
| 420 |
+
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
| 421 |
+
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
| 422 |
+
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
| 423 |
+
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
| 424 |
+
else:
|
| 425 |
+
position_ids = position_ids.transpose(0, 1)
|
| 426 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
| 427 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
| 428 |
+
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
| 429 |
+
|
| 430 |
+
# [seq_len, batch, hidden_size]
|
| 431 |
+
context_layer, present, attention_probs = attention_fn(
|
| 432 |
+
self=self,
|
| 433 |
+
query_layer=query_layer,
|
| 434 |
+
key_layer=key_layer,
|
| 435 |
+
value_layer=value_layer,
|
| 436 |
+
attention_mask=attention_mask,
|
| 437 |
+
hidden_size_per_partition=self.hidden_size_per_partition,
|
| 438 |
+
layer_id=layer_id,
|
| 439 |
+
layer_past=layer_past,
|
| 440 |
+
use_cache=use_cache
|
| 441 |
+
)
|
| 442 |
+
|
| 443 |
+
output = self.dense(context_layer)
|
| 444 |
+
|
| 445 |
+
outputs = (output, present)
|
| 446 |
+
|
| 447 |
+
if output_attentions:
|
| 448 |
+
outputs += (attention_probs,)
|
| 449 |
+
|
| 450 |
+
return outputs # output, present, attention_probs
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
class GEGLU(torch.nn.Module):
|
| 454 |
+
def __init__(self):
|
| 455 |
+
super().__init__()
|
| 456 |
+
self.activation_fn = F.gelu
|
| 457 |
+
|
| 458 |
+
def forward(self, x):
|
| 459 |
+
# dim=-1 breaks in jit for pt<1.10
|
| 460 |
+
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
| 461 |
+
return x1 * self.activation_fn(x2)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
class GLU(torch.nn.Module):
|
| 465 |
+
def __init__(self, hidden_size, inner_hidden_size=None,
|
| 466 |
+
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float):
|
| 467 |
+
super(GLU, self).__init__()
|
| 468 |
+
self.layer_id = layer_id
|
| 469 |
+
self.activation_func = activation_func
|
| 470 |
+
|
| 471 |
+
# Project to 4h.
|
| 472 |
+
self.hidden_size = hidden_size
|
| 473 |
+
if inner_hidden_size is None:
|
| 474 |
+
inner_hidden_size = 4 * hidden_size
|
| 475 |
+
self.inner_hidden_size = inner_hidden_size
|
| 476 |
+
self.dense_h_to_4h = skip_init(
|
| 477 |
+
torch.nn.Linear,
|
| 478 |
+
self.hidden_size,
|
| 479 |
+
self.inner_hidden_size,
|
| 480 |
+
bias=bias,
|
| 481 |
+
dtype=params_dtype,
|
| 482 |
+
)
|
| 483 |
+
# Project back to h.
|
| 484 |
+
self.dense_4h_to_h = skip_init(
|
| 485 |
+
torch.nn.Linear,
|
| 486 |
+
self.inner_hidden_size,
|
| 487 |
+
self.hidden_size,
|
| 488 |
+
bias=bias,
|
| 489 |
+
dtype=params_dtype,
|
| 490 |
+
)
|
| 491 |
+
|
| 492 |
+
def forward(self, hidden_states):
|
| 493 |
+
"""
|
| 494 |
+
hidden_states: [seq_len, batch, hidden_size]
|
| 495 |
+
"""
|
| 496 |
+
|
| 497 |
+
# [seq_len, batch, inner_hidden_size]
|
| 498 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
| 499 |
+
|
| 500 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
| 501 |
+
|
| 502 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
| 503 |
+
|
| 504 |
+
return output
|
| 505 |
+
|
| 506 |
+
|
| 507 |
+
class GLMBlock(torch.nn.Module):
|
| 508 |
+
def __init__(
|
| 509 |
+
self,
|
| 510 |
+
hidden_size,
|
| 511 |
+
num_attention_heads,
|
| 512 |
+
layernorm_epsilon,
|
| 513 |
+
layer_id,
|
| 514 |
+
inner_hidden_size=None,
|
| 515 |
+
hidden_size_per_attention_head=None,
|
| 516 |
+
layernorm=LayerNorm,
|
| 517 |
+
use_bias=True,
|
| 518 |
+
params_dtype=torch.float,
|
| 519 |
+
num_layers=28,
|
| 520 |
+
position_encoding_2d=True
|
| 521 |
+
):
|
| 522 |
+
super(GLMBlock, self).__init__()
|
| 523 |
+
# Set output layer initialization if not provided.
|
| 524 |
+
|
| 525 |
+
self.layer_id = layer_id
|
| 526 |
+
|
| 527 |
+
# Layernorm on the input data.
|
| 528 |
+
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
| 529 |
+
|
| 530 |
+
self.position_encoding_2d = position_encoding_2d
|
| 531 |
+
|
| 532 |
+
# Self attention.
|
| 533 |
+
self.attention = SelfAttention(
|
| 534 |
+
hidden_size,
|
| 535 |
+
num_attention_heads,
|
| 536 |
+
layer_id,
|
| 537 |
+
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
| 538 |
+
bias=use_bias,
|
| 539 |
+
params_dtype=params_dtype,
|
| 540 |
+
position_encoding_2d=self.position_encoding_2d
|
| 541 |
+
)
|
| 542 |
+
|
| 543 |
+
# Layernorm on the input data.
|
| 544 |
+
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
| 545 |
+
|
| 546 |
+
self.num_layers = num_layers
|
| 547 |
+
|
| 548 |
+
# GLU
|
| 549 |
+
self.mlp = GLU(
|
| 550 |
+
hidden_size,
|
| 551 |
+
inner_hidden_size=inner_hidden_size,
|
| 552 |
+
bias=use_bias,
|
| 553 |
+
layer_id=layer_id,
|
| 554 |
+
params_dtype=params_dtype,
|
| 555 |
+
)
|
| 556 |
+
|
| 557 |
+
def forward(
|
| 558 |
+
self,
|
| 559 |
+
hidden_states: torch.Tensor,
|
| 560 |
+
position_ids,
|
| 561 |
+
attention_mask: torch.Tensor,
|
| 562 |
+
layer_id,
|
| 563 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 564 |
+
use_cache: bool = False,
|
| 565 |
+
output_attentions: bool = False,
|
| 566 |
+
):
|
| 567 |
+
"""
|
| 568 |
+
hidden_states: [seq_len, batch, hidden_size]
|
| 569 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
| 570 |
+
"""
|
| 571 |
+
|
| 572 |
+
# Layer norm at the begining of the transformer layer.
|
| 573 |
+
# [seq_len, batch, hidden_size]
|
| 574 |
+
attention_input = self.input_layernorm(hidden_states)
|
| 575 |
+
|
| 576 |
+
# Self attention.
|
| 577 |
+
attention_outputs = self.attention(
|
| 578 |
+
attention_input,
|
| 579 |
+
position_ids,
|
| 580 |
+
attention_mask=attention_mask,
|
| 581 |
+
layer_id=layer_id,
|
| 582 |
+
layer_past=layer_past,
|
| 583 |
+
use_cache=use_cache,
|
| 584 |
+
output_attentions=output_attentions
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
attention_output = attention_outputs[0]
|
| 588 |
+
|
| 589 |
+
outputs = attention_outputs[1:]
|
| 590 |
+
|
| 591 |
+
# Residual connection.
|
| 592 |
+
alpha = (2 * self.num_layers) ** 0.5
|
| 593 |
+
hidden_states = attention_input * alpha + attention_output
|
| 594 |
+
|
| 595 |
+
mlp_input = self.post_attention_layernorm(hidden_states)
|
| 596 |
+
|
| 597 |
+
# MLP.
|
| 598 |
+
mlp_output = self.mlp(mlp_input)
|
| 599 |
+
|
| 600 |
+
# Second residual connection.
|
| 601 |
+
output = mlp_input * alpha + mlp_output
|
| 602 |
+
|
| 603 |
+
if use_cache:
|
| 604 |
+
outputs = (output,) + outputs
|
| 605 |
+
else:
|
| 606 |
+
outputs = (output,) + outputs[1:]
|
| 607 |
+
|
| 608 |
+
return outputs # hidden_states, present, attentions
|
| 609 |
+
|
| 610 |
+
|
| 611 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
| 612 |
+
"""
|
| 613 |
+
An abstract class to handle weights initialization and
|
| 614 |
+
a simple interface for downloading and loading pretrained models.
|
| 615 |
+
"""
|
| 616 |
+
|
| 617 |
+
is_parallelizable = False
|
| 618 |
+
supports_gradient_checkpointing = False
|
| 619 |
+
config_class = ChatGLMConfig
|
| 620 |
+
base_model_prefix = "transformer"
|
| 621 |
+
_no_split_modules = ["GLM6BBlock"]
|
| 622 |
+
|
| 623 |
+
def __init__(self, *inputs, **kwargs):
|
| 624 |
+
super().__init__(*inputs, **kwargs)
|
| 625 |
+
|
| 626 |
+
def _init_weights(self, module: nn.Module):
|
| 627 |
+
"""Initialize the weights."""
|
| 628 |
+
return
|
| 629 |
+
|
| 630 |
+
|
| 631 |
+
CHATGLM_6B_START_DOCSTRING = r"""
|
| 632 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
| 633 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
| 634 |
+
usage and behavior.
|
| 635 |
+
|
| 636 |
+
Parameters:
|
| 637 |
+
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
| 638 |
+
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
| 639 |
+
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
| 640 |
+
"""
|
| 641 |
+
|
| 642 |
+
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
| 643 |
+
Args:
|
| 644 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
| 645 |
+
Indices of input sequence tokens in the vocabulary.
|
| 646 |
+
|
| 647 |
+
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
| 648 |
+
See [`PreTrainedTokenizer.encode`] and
|
| 649 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
| 650 |
+
|
| 651 |
+
[What are input IDs?](../glossary#input-ids)
|
| 652 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
| 653 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 654 |
+
|
| 655 |
+
- 1 for tokens that are **not masked**,
|
| 656 |
+
- 0 for tokens that are **masked**.
|
| 657 |
+
|
| 658 |
+
[What are attention masks?](../glossary#attention-mask)
|
| 659 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 660 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
| 661 |
+
|
| 662 |
+
- 0 corresponds to a *sentence A* token,
|
| 663 |
+
- 1 corresponds to a *sentence B* token.
|
| 664 |
+
|
| 665 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
| 666 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
| 667 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
| 668 |
+
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
| 669 |
+
|
| 670 |
+
[What are position IDs?](../glossary#position-ids)
|
| 671 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
| 672 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
| 673 |
+
|
| 674 |
+
- 1 indicates the head is **not masked**,
|
| 675 |
+
- 0 indicates the head is **masked**.
|
| 676 |
+
|
| 677 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
| 678 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 679 |
+
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
| 680 |
+
than the model's internal embedding lookup matrix.
|
| 681 |
+
output_attentions (`bool`, *optional*):
|
| 682 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
| 683 |
+
tensors for more detail.
|
| 684 |
+
output_hidden_states (`bool`, *optional*):
|
| 685 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
| 686 |
+
more detail.
|
| 687 |
+
return_dict (`bool`, *optional*):
|
| 688 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 689 |
+
"""
|
| 690 |
+
|
| 691 |
+
|
| 692 |
+
@add_start_docstrings(
|
| 693 |
+
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
| 694 |
+
CHATGLM_6B_START_DOCSTRING,
|
| 695 |
+
)
|
| 696 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
| 697 |
+
"""
|
| 698 |
+
|
| 699 |
+
The model can behave as an encoder (with only self-attention) as well
|
| 700 |
+
as a decoder, in which case a layer of cross-attention is added between
|
| 701 |
+
the self-attention layers, following the architecture described in [Attention is
|
| 702 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
| 703 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
| 704 |
+
|
| 705 |
+
To behave as an decoder the model needs to be initialized with the
|
| 706 |
+
`is_decoder` argument of the configuration set to `True`.
|
| 707 |
+
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
| 708 |
+
argument and `add_cross_attention` set to `True`; an
|
| 709 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
| 710 |
+
"""
|
| 711 |
+
|
| 712 |
+
def __init__(self, config: ChatGLMConfig):
|
| 713 |
+
super().__init__(config)
|
| 714 |
+
|
| 715 |
+
# recording parameters
|
| 716 |
+
self.max_sequence_length = config.max_sequence_length
|
| 717 |
+
self.hidden_size = config.hidden_size
|
| 718 |
+
self.params_dtype = torch.half
|
| 719 |
+
self.num_attention_heads = config.num_attention_heads
|
| 720 |
+
self.vocab_size = config.vocab_size
|
| 721 |
+
self.num_layers = config.num_layers
|
| 722 |
+
self.layernorm_epsilon = config.layernorm_epsilon
|
| 723 |
+
self.inner_hidden_size = config.inner_hidden_size
|
| 724 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
| 725 |
+
self.position_encoding_2d = config.position_encoding_2d
|
| 726 |
+
|
| 727 |
+
self.word_embeddings = skip_init(
|
| 728 |
+
torch.nn.Embedding,
|
| 729 |
+
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
| 730 |
+
dtype=self.params_dtype
|
| 731 |
+
)
|
| 732 |
+
|
| 733 |
+
def get_layer(layer_id):
|
| 734 |
+
return GLMBlock(
|
| 735 |
+
self.hidden_size,
|
| 736 |
+
self.num_attention_heads,
|
| 737 |
+
self.layernorm_epsilon,
|
| 738 |
+
layer_id,
|
| 739 |
+
inner_hidden_size=self.inner_hidden_size,
|
| 740 |
+
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
| 741 |
+
layernorm=LayerNorm,
|
| 742 |
+
use_bias=True,
|
| 743 |
+
params_dtype=self.params_dtype,
|
| 744 |
+
position_encoding_2d=self.position_encoding_2d,
|
| 745 |
+
)
|
| 746 |
+
|
| 747 |
+
self.layers = torch.nn.ModuleList(
|
| 748 |
+
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
| 749 |
+
)
|
| 750 |
+
|
| 751 |
+
# Final layer norm before output.
|
| 752 |
+
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
| 753 |
+
|
| 754 |
+
def get_input_embeddings(self):
|
| 755 |
+
return self.word_embeddings
|
| 756 |
+
|
| 757 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
| 758 |
+
self.word_embeddings = new_embeddings
|
| 759 |
+
|
| 760 |
+
def get_masks(self, seq, device):
|
| 761 |
+
context_length = seq.index(self.config.bos_token_id) + 1
|
| 762 |
+
|
| 763 |
+
attention_mask = torch.ones((1, len(seq), len(seq)), device=device)
|
| 764 |
+
attention_mask.tril_()
|
| 765 |
+
attention_mask[..., :context_length - 1] = 1
|
| 766 |
+
attention_mask.unsqueeze_(1)
|
| 767 |
+
attention_mask = (attention_mask < 0.5).bool()
|
| 768 |
+
|
| 769 |
+
return attention_mask
|
| 770 |
+
|
| 771 |
+
def get_position_ids(self, seq, mask_position, device, gmask=False):
|
| 772 |
+
context_length = seq.index(self.config.bos_token_id) + 1
|
| 773 |
+
if self.position_encoding_2d:
|
| 774 |
+
seq_length = seq.index(self.config.bos_token_id)
|
| 775 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
| 776 |
+
if not gmask:
|
| 777 |
+
position_ids[seq_length:] = mask_position
|
| 778 |
+
block_position_ids = torch.cat((
|
| 779 |
+
torch.zeros(seq_length, dtype=torch.long, device=device),
|
| 780 |
+
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
| 781 |
+
))
|
| 782 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
| 783 |
+
else:
|
| 784 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
| 785 |
+
if not gmask:
|
| 786 |
+
position_ids[context_length - 1:] = mask_position
|
| 787 |
+
|
| 788 |
+
position_ids = position_ids.unsqueeze(0)
|
| 789 |
+
|
| 790 |
+
return position_ids
|
| 791 |
+
|
| 792 |
+
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
| 793 |
+
@add_code_sample_docstrings(
|
| 794 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 795 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 796 |
+
config_class=_CONFIG_FOR_DOC,
|
| 797 |
+
)
|
| 798 |
+
def forward(
|
| 799 |
+
self,
|
| 800 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 801 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 802 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 803 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
| 804 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
| 805 |
+
use_cache: Optional[bool] = None,
|
| 806 |
+
output_attentions: Optional[bool] = None,
|
| 807 |
+
output_hidden_states: Optional[bool] = None,
|
| 808 |
+
return_dict: Optional[bool] = None,
|
| 809 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
| 810 |
+
|
| 811 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 812 |
+
output_hidden_states = (
|
| 813 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 814 |
+
)
|
| 815 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 816 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 817 |
+
|
| 818 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 819 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 820 |
+
elif input_ids is not None:
|
| 821 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 822 |
+
elif inputs_embeds is not None:
|
| 823 |
+
batch_size, seq_length, _ = inputs_embeds.shape[:2]
|
| 824 |
+
else:
|
| 825 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 826 |
+
|
| 827 |
+
if past_key_values is None:
|
| 828 |
+
past_key_values = tuple([None] * len(self.layers))
|
| 829 |
+
seq = input_ids[0].tolist()
|
| 830 |
+
|
| 831 |
+
if attention_mask is None:
|
| 832 |
+
attention_mask = self.get_masks(
|
| 833 |
+
seq=seq,
|
| 834 |
+
device=input_ids.device
|
| 835 |
+
)
|
| 836 |
+
|
| 837 |
+
if position_ids is None:
|
| 838 |
+
MASK, gMASK = 150000, 150001
|
| 839 |
+
mask_token = MASK if MASK in input_ids else gMASK
|
| 840 |
+
use_gmask = False if MASK in input_ids else gMASK
|
| 841 |
+
|
| 842 |
+
mask_position = seq.index(mask_token)
|
| 843 |
+
position_ids = self.get_position_ids(
|
| 844 |
+
seq=seq,
|
| 845 |
+
mask_position=mask_position,
|
| 846 |
+
device=input_ids.device,
|
| 847 |
+
gmask=use_gmask
|
| 848 |
+
)
|
| 849 |
+
|
| 850 |
+
if inputs_embeds is None:
|
| 851 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 852 |
+
|
| 853 |
+
# [seq_len, batch, hidden_size]
|
| 854 |
+
hidden_states = inputs_embeds.transpose(0, 1)
|
| 855 |
+
|
| 856 |
+
presents = () if use_cache else None
|
| 857 |
+
all_self_attentions = () if output_attentions else None
|
| 858 |
+
all_hidden_states = () if output_hidden_states else None
|
| 859 |
+
|
| 860 |
+
seq_length_with_past = seq_length
|
| 861 |
+
past_key_values_length = 0
|
| 862 |
+
if past_key_values[0] is not None:
|
| 863 |
+
past_key_values_length = past_key_values[0][0].shape[0]
|
| 864 |
+
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 865 |
+
if attention_mask is None:
|
| 866 |
+
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
| 867 |
+
|
| 868 |
+
else:
|
| 869 |
+
attention_mask = attention_mask.to(input_ids.device)
|
| 870 |
+
|
| 871 |
+
for i, layer in enumerate(self.layers):
|
| 872 |
+
|
| 873 |
+
if output_hidden_states:
|
| 874 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 875 |
+
|
| 876 |
+
layer_ret = layer(
|
| 877 |
+
hidden_states,
|
| 878 |
+
position_ids=position_ids,
|
| 879 |
+
attention_mask=attention_mask,
|
| 880 |
+
layer_id=torch.tensor(i),
|
| 881 |
+
layer_past=past_key_values[i],
|
| 882 |
+
use_cache=use_cache,
|
| 883 |
+
output_attentions=output_attentions
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
hidden_states = layer_ret[0]
|
| 887 |
+
|
| 888 |
+
if use_cache:
|
| 889 |
+
presents = presents + (layer_ret[1],)
|
| 890 |
+
|
| 891 |
+
if output_attentions:
|
| 892 |
+
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
| 893 |
+
|
| 894 |
+
# Final layer norm.
|
| 895 |
+
hidden_states = self.final_layernorm(hidden_states)
|
| 896 |
+
|
| 897 |
+
if output_hidden_states:
|
| 898 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 899 |
+
|
| 900 |
+
if not return_dict:
|
| 901 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
| 902 |
+
|
| 903 |
+
return BaseModelOutputWithPast(
|
| 904 |
+
last_hidden_state=hidden_states,
|
| 905 |
+
past_key_values=presents,
|
| 906 |
+
hidden_states=all_hidden_states,
|
| 907 |
+
attentions=all_self_attentions,
|
| 908 |
+
)
|
| 909 |
+
|
| 910 |
+
|
| 911 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
| 912 |
+
def __init__(self, config):
|
| 913 |
+
super().__init__(config)
|
| 914 |
+
|
| 915 |
+
# self.hidden_size = config.hidden_size
|
| 916 |
+
# self.params_dtype = torch.half
|
| 917 |
+
# self.vocab_size = config.vocab_size
|
| 918 |
+
self.max_sequence_length = config.max_sequence_length
|
| 919 |
+
|
| 920 |
+
self.position_encoding_2d = config.position_encoding_2d
|
| 921 |
+
|
| 922 |
+
self.transformer = ChatGLMModel(config)
|
| 923 |
+
|
| 924 |
+
self.lm_head = skip_init(
|
| 925 |
+
nn.Linear,
|
| 926 |
+
config.hidden_size,
|
| 927 |
+
config.vocab_size,
|
| 928 |
+
bias=False,
|
| 929 |
+
dtype=torch.half
|
| 930 |
+
)
|
| 931 |
+
|
| 932 |
+
def get_output_embeddings(self):
|
| 933 |
+
return self.lm_head
|
| 934 |
+
|
| 935 |
+
def set_output_embeddings(self, new_embeddings):
|
| 936 |
+
self.lm_head = new_embeddings
|
| 937 |
+
|
| 938 |
+
def get_masks_and_position_ids(self, seq, mask_position, context_length, device, gmask=False):
|
| 939 |
+
attention_mask = torch.ones((1, context_length, context_length), device=device)
|
| 940 |
+
attention_mask.tril_()
|
| 941 |
+
attention_mask[..., :context_length - 1] = 1
|
| 942 |
+
attention_mask.unsqueeze_(1)
|
| 943 |
+
attention_mask = (attention_mask < 0.5).bool()
|
| 944 |
+
|
| 945 |
+
if self.position_encoding_2d:
|
| 946 |
+
seq_length = seq.index(self.config.bos_token_id)
|
| 947 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
| 948 |
+
if not gmask:
|
| 949 |
+
position_ids[seq_length:] = mask_position
|
| 950 |
+
block_position_ids = torch.cat((
|
| 951 |
+
torch.zeros(seq_length, dtype=torch.long, device=device),
|
| 952 |
+
torch.arange(context_length - seq_length, dtype=torch.long, device=device) + 1
|
| 953 |
+
))
|
| 954 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=0)
|
| 955 |
+
else:
|
| 956 |
+
position_ids = torch.arange(context_length, dtype=torch.long, device=device)
|
| 957 |
+
if not gmask:
|
| 958 |
+
position_ids[context_length - 1:] = mask_position
|
| 959 |
+
|
| 960 |
+
position_ids = position_ids.unsqueeze(0)
|
| 961 |
+
|
| 962 |
+
return attention_mask, position_ids
|
| 963 |
+
|
| 964 |
+
def prepare_inputs_for_generation(
|
| 965 |
+
self,
|
| 966 |
+
input_ids: torch.LongTensor,
|
| 967 |
+
past: Optional[torch.Tensor] = None,
|
| 968 |
+
past_key_values: Optional[torch.Tensor] = None,
|
| 969 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 970 |
+
**kwargs
|
| 971 |
+
) -> dict:
|
| 972 |
+
|
| 973 |
+
MASK, gMASK = 150000, 150001
|
| 974 |
+
mask_token = MASK if MASK in input_ids else gMASK
|
| 975 |
+
use_gmask = False if MASK in input_ids else gMASK
|
| 976 |
+
seq = input_ids[0].tolist()
|
| 977 |
+
mask_position = seq.index(mask_token)
|
| 978 |
+
|
| 979 |
+
if mask_token not in seq:
|
| 980 |
+
raise ValueError("You have to add either [MASK] or [gMASK] in your input")
|
| 981 |
+
|
| 982 |
+
# only last token for input_ids if past is not None
|
| 983 |
+
if past is not None or past_key_values is not None:
|
| 984 |
+
context_length = seq.index(self.config.bos_token_id)
|
| 985 |
+
last_token = input_ids[:, -1].unsqueeze(-1)
|
| 986 |
+
if self.position_encoding_2d:
|
| 987 |
+
position_ids = torch.tensor([[[mask_position], [len(seq) - context_length]]], dtype=torch.long,
|
| 988 |
+
device=input_ids.device)
|
| 989 |
+
else:
|
| 990 |
+
position_ids = torch.tensor([[mask_position]], dtype=torch.long, device=input_ids.device)
|
| 991 |
+
|
| 992 |
+
if past is None:
|
| 993 |
+
past = past_key_values
|
| 994 |
+
return {
|
| 995 |
+
"input_ids": last_token,
|
| 996 |
+
"past_key_values": past,
|
| 997 |
+
"position_ids": position_ids,
|
| 998 |
+
}
|
| 999 |
+
else:
|
| 1000 |
+
attention_mask, position_ids = self.get_masks_and_position_ids(
|
| 1001 |
+
seq=seq,
|
| 1002 |
+
mask_position=mask_position,
|
| 1003 |
+
context_length=len(seq),
|
| 1004 |
+
device=input_ids.device,
|
| 1005 |
+
gmask=use_gmask
|
| 1006 |
+
)
|
| 1007 |
+
|
| 1008 |
+
return {
|
| 1009 |
+
"input_ids": input_ids,
|
| 1010 |
+
"past_key_values": past,
|
| 1011 |
+
"position_ids": position_ids,
|
| 1012 |
+
"attention_mask": attention_mask
|
| 1013 |
+
}
|
| 1014 |
+
|
| 1015 |
+
def forward(
|
| 1016 |
+
self,
|
| 1017 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1018 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1019 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1020 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
| 1021 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1022 |
+
labels: Optional[torch.Tensor] = None,
|
| 1023 |
+
use_cache: Optional[bool] = None,
|
| 1024 |
+
output_attentions: Optional[bool] = None,
|
| 1025 |
+
output_hidden_states: Optional[bool] = None,
|
| 1026 |
+
return_dict: Optional[bool] = None,
|
| 1027 |
+
):
|
| 1028 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 1029 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1030 |
+
|
| 1031 |
+
transformer_outputs = self.transformer(
|
| 1032 |
+
input_ids=input_ids,
|
| 1033 |
+
position_ids=position_ids,
|
| 1034 |
+
attention_mask=attention_mask,
|
| 1035 |
+
past_key_values=past_key_values,
|
| 1036 |
+
inputs_embeds=inputs_embeds,
|
| 1037 |
+
use_cache=use_cache,
|
| 1038 |
+
output_attentions=output_attentions,
|
| 1039 |
+
output_hidden_states=output_hidden_states,
|
| 1040 |
+
return_dict=return_dict,
|
| 1041 |
+
)
|
| 1042 |
+
|
| 1043 |
+
hidden_states = transformer_outputs[0]
|
| 1044 |
+
|
| 1045 |
+
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
| 1046 |
+
|
| 1047 |
+
loss = None
|
| 1048 |
+
if labels is not None:
|
| 1049 |
+
lm_logits = lm_logits.to(torch.float32)
|
| 1050 |
+
|
| 1051 |
+
# Shift so that tokens < n predict n
|
| 1052 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1053 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1054 |
+
# Flatten the tokens
|
| 1055 |
+
loss_fct = CrossEntropyLoss()
|
| 1056 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1057 |
+
|
| 1058 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
| 1059 |
+
loss = loss.to(hidden_states.dtype)
|
| 1060 |
+
|
| 1061 |
+
if not return_dict:
|
| 1062 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 1063 |
+
return ((loss,) + output) if loss is not None else output
|
| 1064 |
+
|
| 1065 |
+
return CausalLMOutputWithPast(
|
| 1066 |
+
loss=loss,
|
| 1067 |
+
logits=lm_logits,
|
| 1068 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1069 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1070 |
+
attentions=transformer_outputs.attentions,
|
| 1071 |
+
)
|
| 1072 |
+
|
| 1073 |
+
@staticmethod
|
| 1074 |
+
def _reorder_cache(
|
| 1075 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
| 1076 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
| 1077 |
+
"""
|
| 1078 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
| 1079 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
| 1080 |
+
beam_idx at every generation step.
|
| 1081 |
+
|
| 1082 |
+
Output shares the same memory storage as `past`.
|
| 1083 |
+
"""
|
| 1084 |
+
return tuple(
|
| 1085 |
+
(
|
| 1086 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
| 1087 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
| 1088 |
+
)
|
| 1089 |
+
for layer_past in past
|
| 1090 |
+
)
|
| 1091 |
+
|
| 1092 |
+
def process_response(self, response):
|
| 1093 |
+
response = response.strip()
|
| 1094 |
+
response = response.replace("[[训练时间]]", "2023年")
|
| 1095 |
+
punkts = [
|
| 1096 |
+
[",", ","],
|
| 1097 |
+
["!", "!"],
|
| 1098 |
+
[":", ":"],
|
| 1099 |
+
[";", ";"],
|
| 1100 |
+
["\?", "?"],
|
| 1101 |
+
]
|
| 1102 |
+
for item in punkts:
|
| 1103 |
+
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
|
| 1104 |
+
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
|
| 1105 |
+
return response
|
| 1106 |
+
|
| 1107 |
+
@torch.no_grad()
|
| 1108 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
| 1109 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
| 1110 |
+
if history is None:
|
| 1111 |
+
history = []
|
| 1112 |
+
if logits_processor is None:
|
| 1113 |
+
logits_processor = LogitsProcessorList()
|
| 1114 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
| 1115 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
| 1116 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
| 1117 |
+
if not history:
|
| 1118 |
+
prompt = query
|
| 1119 |
+
else:
|
| 1120 |
+
prompt = ""
|
| 1121 |
+
for i, (old_query, response) in enumerate(history):
|
| 1122 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
| 1123 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
| 1124 |
+
input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
|
| 1125 |
+
input_ids = input_ids.to(self.device)
|
| 1126 |
+
outputs = self.generate(**input_ids, **gen_kwargs)
|
| 1127 |
+
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
|
| 1128 |
+
response = tokenizer.decode(outputs)
|
| 1129 |
+
response = self.process_response(response)
|
| 1130 |
+
history = history + [(query, response)]
|
| 1131 |
+
return response, history
|
| 1132 |
+
|
| 1133 |
+
@torch.no_grad()
|
| 1134 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
|
| 1135 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
| 1136 |
+
if history is None:
|
| 1137 |
+
history = []
|
| 1138 |
+
if logits_processor is None:
|
| 1139 |
+
logits_processor = LogitsProcessorList()
|
| 1140 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
| 1141 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
| 1142 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
| 1143 |
+
if not history:
|
| 1144 |
+
prompt = query
|
| 1145 |
+
else:
|
| 1146 |
+
prompt = ""
|
| 1147 |
+
for i, (old_query, response) in enumerate(history):
|
| 1148 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
| 1149 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
| 1150 |
+
input_ids = tokenizer([prompt], return_tensors="pt", padding=True)
|
| 1151 |
+
input_ids = input_ids.to(self.device)
|
| 1152 |
+
for outputs in self.stream_generate(**input_ids, **gen_kwargs):
|
| 1153 |
+
outputs = outputs.tolist()[0][len(input_ids["input_ids"][0]):]
|
| 1154 |
+
response = tokenizer.decode(outputs)
|
| 1155 |
+
response = self.process_response(response)
|
| 1156 |
+
new_history = history + [(query, response)]
|
| 1157 |
+
yield response, new_history
|
| 1158 |
+
|
| 1159 |
+
@torch.no_grad()
|
| 1160 |
+
def stream_generate(
|
| 1161 |
+
self,
|
| 1162 |
+
input_ids,
|
| 1163 |
+
generation_config: Optional[GenerationConfig] = None,
|
| 1164 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
| 1165 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
| 1166 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
| 1167 |
+
**kwargs,
|
| 1168 |
+
):
|
| 1169 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
| 1170 |
+
|
| 1171 |
+
if generation_config is None:
|
| 1172 |
+
generation_config = self.generation_config
|
| 1173 |
+
generation_config = copy.deepcopy(generation_config)
|
| 1174 |
+
model_kwargs = generation_config.update(**kwargs)
|
| 1175 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
| 1176 |
+
|
| 1177 |
+
if isinstance(eos_token_id, int):
|
| 1178 |
+
eos_token_id = [eos_token_id]
|
| 1179 |
+
|
| 1180 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
| 1181 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
| 1182 |
+
warnings.warn(
|
| 1183 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
| 1184 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
| 1185 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
| 1186 |
+
UserWarning,
|
| 1187 |
+
)
|
| 1188 |
+
elif generation_config.max_new_tokens is not None:
|
| 1189 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
| 1190 |
+
if not has_default_max_length:
|
| 1191 |
+
logger.warn(
|
| 1192 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
| 1193 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
| 1194 |
+
"Please refer to the documentation for more information. "
|
| 1195 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
| 1196 |
+
UserWarning,
|
| 1197 |
+
)
|
| 1198 |
+
|
| 1199 |
+
if input_ids_seq_length >= generation_config.max_length:
|
| 1200 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
| 1201 |
+
logger.warning(
|
| 1202 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
| 1203 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
| 1204 |
+
" increasing `max_new_tokens`."
|
| 1205 |
+
)
|
| 1206 |
+
|
| 1207 |
+
# 2. Set generation parameters if not already defined
|
| 1208 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
| 1209 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
| 1210 |
+
|
| 1211 |
+
logits_processor = self._get_logits_processor(
|
| 1212 |
+
generation_config=generation_config,
|
| 1213 |
+
input_ids_seq_length=input_ids_seq_length,
|
| 1214 |
+
encoder_input_ids=input_ids,
|
| 1215 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
| 1216 |
+
logits_processor=logits_processor,
|
| 1217 |
+
)
|
| 1218 |
+
|
| 1219 |
+
stopping_criteria = self._get_stopping_criteria(
|
| 1220 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
| 1221 |
+
)
|
| 1222 |
+
logits_warper = self._get_logits_warper(generation_config)
|
| 1223 |
+
|
| 1224 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
| 1225 |
+
scores = None
|
| 1226 |
+
while True:
|
| 1227 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
| 1228 |
+
# forward pass to get next token
|
| 1229 |
+
outputs = self(
|
| 1230 |
+
**model_inputs,
|
| 1231 |
+
return_dict=True,
|
| 1232 |
+
output_attentions=False,
|
| 1233 |
+
output_hidden_states=False,
|
| 1234 |
+
)
|
| 1235 |
+
|
| 1236 |
+
next_token_logits = outputs.logits[:, -1, :]
|
| 1237 |
+
|
| 1238 |
+
# pre-process distribution
|
| 1239 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
| 1240 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
| 1241 |
+
|
| 1242 |
+
# sample
|
| 1243 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
| 1244 |
+
if generation_config.do_sample:
|
| 1245 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
| 1246 |
+
else:
|
| 1247 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
| 1248 |
+
|
| 1249 |
+
# update generated ids, model inputs, and length for next step
|
| 1250 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
| 1251 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
| 1252 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
| 1253 |
+
)
|
| 1254 |
+
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
| 1255 |
+
|
| 1256 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
| 1257 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
| 1258 |
+
break
|
| 1259 |
+
yield input_ids
|
| 1260 |
+
|
| 1261 |
+
def quantize(self, bits: int):
|
| 1262 |
+
from .quantization import quantize
|
| 1263 |
+
self.transformer = quantize(self.transformer, bits)
|
| 1264 |
+
return self
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# int8
|
| 2 |
+
bitsandbytes==0.37.1
|
| 3 |
+
accelerate==0.17.1
|
| 4 |
+
|
| 5 |
+
# chatglm
|
| 6 |
+
protobuf>=3.19.5,<3.20.1
|
| 7 |
+
transformers==4.27.1
|
| 8 |
+
icetk
|
| 9 |
+
cpm_kernels==1.0.11
|
| 10 |
+
|
| 11 |
+
#
|
| 12 |
+
datasets==2.10.1
|
| 13 |
+
git+https://github.com/huggingface/peft.git # 最新版本 >=0.3.0.dev0
|
| 14 |
+
|
| 15 |
+
-f https://download.pytorch.org/whl/cpu
|
| 16 |
+
torch
|
| 17 |
+
-f https://download.pytorch.org/whl/cpu
|
| 18 |
+
torchvision
|
| 19 |
+
-f https://download.pytorch.org/whl/cpu
|
| 20 |
+
torchaudio
|