Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -27,13 +27,6 @@ pipeline.to(device)
|
|
| 27 |
pipe_upsample.to(device)
|
| 28 |
pipeline.vae.enable_tiling()
|
| 29 |
|
| 30 |
-
canny_processor = CannyDetector()
|
| 31 |
-
|
| 32 |
-
# Initialize MediaPipe pose estimation
|
| 33 |
-
# mp_drawing = mp.solutions.drawing_utils
|
| 34 |
-
# mp_drawing_styles = mp.solutions.drawing_styles
|
| 35 |
-
# mp_pose = mp.solutions.pose
|
| 36 |
-
|
| 37 |
CONTROL_LORAS = {
|
| 38 |
"canny": {
|
| 39 |
"repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
|
|
@@ -60,6 +53,13 @@ pipeline.load_lora_weights(
|
|
| 60 |
)
|
| 61 |
pipeline.set_adapters([CONTROL_LORAS["canny"]["adapter_name"]], adapter_weights=[1.0])
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
@spaces.GPU()
|
| 64 |
def read_video(video) -> torch.Tensor:
|
| 65 |
"""
|
|
@@ -180,11 +180,12 @@ def process_video_for_control(reference_video, control_type):
|
|
| 180 |
processed_video = process_video_for_pose(video)
|
| 181 |
else:
|
| 182 |
processed_video = reference_video
|
| 183 |
-
fps = 24
|
| 184 |
-
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp2_file:
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
return output2_path
|
|
|
|
| 188 |
|
| 189 |
|
| 190 |
@spaces.GPU(duration=160)
|
|
@@ -224,7 +225,7 @@ def generate_video(
|
|
| 224 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
| 225 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
| 226 |
|
| 227 |
-
|
| 228 |
|
| 229 |
# Load the appropriate control LoRA and update state
|
| 230 |
# updated_lora_state = load_control_lora(control_type, current_lora_state)
|
|
|
|
| 27 |
pipe_upsample.to(device)
|
| 28 |
pipeline.vae.enable_tiling()
|
| 29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
CONTROL_LORAS = {
|
| 31 |
"canny": {
|
| 32 |
"repo": "Lightricks/LTX-Video-ICLoRA-canny-13b-0.9.7",
|
|
|
|
| 53 |
)
|
| 54 |
pipeline.set_adapters([CONTROL_LORAS["canny"]["adapter_name"]], adapter_weights=[1.0])
|
| 55 |
|
| 56 |
+
# Initialize MediaPipe pose estimation
|
| 57 |
+
# mp_drawing = mp.solutions.drawing_utils
|
| 58 |
+
# mp_drawing_styles = mp.solutions.drawing_styles
|
| 59 |
+
# mp_pose = mp.solutions.pose
|
| 60 |
+
|
| 61 |
+
canny_processor = CannyDetector()
|
| 62 |
+
|
| 63 |
@spaces.GPU()
|
| 64 |
def read_video(video) -> torch.Tensor:
|
| 65 |
"""
|
|
|
|
| 180 |
processed_video = process_video_for_pose(video)
|
| 181 |
else:
|
| 182 |
processed_video = reference_video
|
| 183 |
+
# fps = 24
|
| 184 |
+
# with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as tmp2_file:
|
| 185 |
+
# output2_path = tmp2_file.name
|
| 186 |
+
# export_to_video(processed_video, output2_path, fps=fps)
|
| 187 |
+
# return output2_path
|
| 188 |
+
return processed_video
|
| 189 |
|
| 190 |
|
| 191 |
@spaces.GPU(duration=160)
|
|
|
|
| 225 |
temporal_compression = pipeline.vae_temporal_compression_ratio
|
| 226 |
num_frames = ((num_frames - 1) // temporal_compression) * temporal_compression + 1
|
| 227 |
|
| 228 |
+
|
| 229 |
|
| 230 |
# Load the appropriate control LoRA and update state
|
| 231 |
# updated_lora_state = load_control_lora(control_type, current_lora_state)
|