Spaces:
Sleeping
Sleeping
File size: 2,405 Bytes
f60fef5 3537d48 bd39949 3537d48 bd39949 0c9440e bd39949 3537d48 bd39949 3537d48 0c9440e 3537d48 6fb64b4 3537d48 0c9440e 3537d48 0c9440e 3537d48 0c9440e 6fb64b4 0c9440e 6fb64b4 0c9440e 6fb64b4 3537d48 0c9440e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
from flask import Flask, request, render_template
import os
import json
import numpy as np
from Vit_concept import run_inference, model
from GP import genetic_programming
app = Flask(__name__)
UPLOAD_FOLDER = 'uploads'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
def tolist_safe(obj):
return obj.tolist() if isinstance(obj, np.ndarray) else obj
@app.route('/')
def index():
return render_template('index.html')
@app.route('/upload', methods=['POST'])
def upload():
if 'file' not in request.files:
return "No file part"
file = request.files['file']
if file.filename == '':
return "No selected file"
filepath = os.path.join(UPLOAD_FOLDER, file.filename)
file.save(filepath)
with open(filepath, 'r') as f:
data = json.load(f)
# Collect training data and predict HLCs
input_output_pairs = []
predicted_HLCs = []
for sample in data.get("train", []):
input_grid = sample["input"]
output_grid = sample["output"]
concept_label, _ = run_inference(model, input_grid, output_grid)
predicted_HLCs.append(concept_label)
input_output_pairs.append((tolist_safe(input_grid), tolist_safe(output_grid)))
predicted_HLCs = list(set(predicted_HLCs))
# GP optimization
best_program, generations = genetic_programming(
input_output_pairs=input_output_pairs,
population_size=200,
generations=200,
mutation_rate=0.2,
crossover_rate=0.7,
max_depth=3,
predicted_HLCs=predicted_HLCs
)
# Evaluate GP program on test inputs
test_pairs = []
predicted_test_outputs = []
for sample in data.get("test", []):
test_input = tolist_safe(sample["input"])
test_output = tolist_safe(sample["output"])
test_pairs.append((test_input, test_output))
try:
pred = tolist_safe(best_program.evaluate(test_input))
except Exception as e:
print(f"Prediction error: {e}")
pred = [["ERROR"]]
predicted_test_outputs.append(pred)
return render_template(
"results.html",
hlcs=predicted_HLCs,
input_output_pairs=input_output_pairs,
test_pairs=test_pairs,
predicted_test_outputs=predicted_test_outputs,
best_program=str(best_program)
)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860, debug=False)
|