File size: 88,314 Bytes
3537d48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
# Custom ViT from T5
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py

from transformers.models.t5.modeling_t5 import (
    T5Model,
    T5Config,
    T5Stack,
    T5PreTrainedModel,
    T5Block,
    T5LayerNorm,
    T5LayerFF,
    T5LayerSelfAttention,
    T5Attention,
    T5LayerCrossAttention,
)

from transformers.modeling_outputs import (
    CausalLMOutputWithPast,
    BaseModelOutputWithPastAndCrossAttentions,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)



import math
import torch
from torch import nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
#encoder related code starts here 
# Unified Vision Transformer Embedding class
class VisionTransformerEmbedding(nn.Module):
    def __init__(self, embed_dim, config):
        super(VisionTransformerEmbedding, self).__init__()
        self.config = config
        self.embed_dim = embed_dim

        # Learnable scaling factors for the learnable normalization option
        if self.config.PE_mix_strategy in ['learnable_scaling_vec', 'weighted_sum_vec', 'weighted_sum_no_norm_vec']:
            self.position_scale = nn.Parameter(torch.ones(1, embed_dim))
            self.input_weight = nn.Parameter(torch.ones(1,embed_dim))
            self.position_weight = nn.Parameter(torch.ones(1,embed_dim))

        if self.config.PE_mix_strategy in ['learnable_scaling', 'weighted_sum', 'weighted_sum_no_norm']:
            self.position_scale = nn.Parameter(torch.ones(1))
            self.input_weight = nn.Parameter(torch.ones(1))
            self.position_weight = nn.Parameter(torch.ones(1))

        # Positional attention mechanism for the positional attention option
        if self.config.PE_mix_strategy == 'positional_attention':
            self.attention = nn.MultiheadAttention(embed_dim, num_heads=8)

        # Layer normalization for the layer normalization option
        if self.config.PE_mix_strategy == 'layer_norm':
            self.layer_norm = nn.LayerNorm(embed_dim)

    def forward(self, inputs_embeds, position_embeds):
        strategy = self.config.PE_mix_strategy

        if strategy == 'hardcoded_normalization':
            inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1)
            position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1)
            output_embeds = inputs_embeds_norm + position_embeds_norm

        elif strategy in ['learnable_scaling','learnable_scaling_vec']:
            scaled_position_embeds = self.position_scale * position_embeds
            output_embeds = inputs_embeds + scaled_position_embeds

        elif strategy in ['weighted_sum','weighted_sum_vec']:
            inputs_embeds_norm = F.normalize(inputs_embeds, p=2, dim=-1)
            position_embeds_norm = F.normalize(position_embeds, p=2, dim=-1)
            output_embeds = (self.input_weight * inputs_embeds_norm) + (self.position_weight * position_embeds_norm)

        elif strategy in ['weighted_sum_no_norm','weighted_sum_no_norm_vec']:
            # Directly apply the weights without normalization
            output_embeds = (self.input_weight * inputs_embeds) + (self.position_weight * position_embeds)

        elif strategy == 'positional_attention':
            # Expanding position_embeds to match the batch size of inputs_embeds
            position_embeds_expanded = position_embeds.expand(inputs_embeds.shape[0], -1, -1)

            # Ensure the inputs are in the correct shape for MultiheadAttention (3D: [seq_len, batch_size, embed_dim])
            inputs_embeds_reshaped = inputs_embeds.transpose(0, 1)  # [batch_size, seq_len, embed_dim] -> [seq_len, batch_size, embed_dim]
            position_embeds_reshaped = position_embeds_expanded.transpose(0, 1)  # [batch_size, seq_len, embed_dim] -> [seq_len, batch_size, embed_dim]

            attn_output, _ = self.attention(inputs_embeds_reshaped, position_embeds_reshaped, position_embeds_reshaped)
            output_embeds = inputs_embeds_reshaped + attn_output

            # Transpose back to original shape
            output_embeds = output_embeds.transpose(0, 1)  # [seq_len, batch_size, embed_dim] -> [batch_size, seq_len, embed_dim]

        elif strategy == 'layer_norm':
            combined_embeds = inputs_embeds + position_embeds
            # Default comes with Learnable Scaling and Shifting
            output_embeds = self.layer_norm(combined_embeds)

        elif strategy == 'default':
            output_embeds = inputs_embeds + position_embeds

        else:
            raise ValueError(f"Unsupported PE_mix_strategy: {strategy}")

        return output_embeds


# https://github.com/McGill-NLP/length-generalization/blob/main/src/models/custom_t5_decoder_only.py
class PositionalEmbedding(nn.Module):
    def __init__(self, demb):
        super().__init__()

        self.demb = demb

        inv_freq = 1 / (10000 ** (torch.arange(0.0, demb, 2.0) / demb))
        self.register_buffer("inv_freq", inv_freq)

    def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[None, :, :].expand(bsz, -1, -1)
        else:
            return pos_emb[None, :, :]


class FixedAbsolutePositionalEmbedding(nn.Module):
    def __init__(self, dim):
        super().__init__()
        inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim))
        t = torch.arange(16384).type_as(inv_freq)
        sinusoid_inp = torch.einsum("i , j -> i j", t, inv_freq)
        emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1)
        self.embed = nn.Embedding.from_pretrained(emb, freeze=True)

    def forward(self, position_ids: torch.Tensor):
        return self.embed(position_ids.long())


class FixedRotaryPositionalEmbedding(nn.Module):
    def __init__(
        self, rotary_dim: int, rotary_base: int = 10000, max_position: int = 16384
    ):
        super().__init__()
        # This is an inverse frequency tensor
        # Each dimension has a higher denominator than the previous one
        # So, the frequency will be lower for higher dimensions
        inv_freq = 1.0 / (
            rotary_base ** (torch.arange(0, rotary_dim, 2).float() / rotary_dim)
        )  # [rotary_dim/2]

        # Now, we create frequencies for each position
        t = torch.arange(max_position, device=inv_freq.device, dtype=inv_freq.dtype)
        freqs = torch.einsum("i,j->ij", t, inv_freq)  # [max_position, rotary_dim/2]

        sins = torch.sin(freqs)
        coss = torch.cos(freqs)

        emb = torch.cat([sins, coss], dim=-1)  # [max_position, rotary_dim]
        self.embed = nn.Embedding.from_pretrained(emb, freeze=True)

    def forward(self, position_ids: torch.Tensor):
        return self.embed(position_ids.long())

def fixed_pos_embedding(x, seq_dim=1, seq_len=None):
    dim = x.shape[-1]
    if seq_len is None:
        seq_len = x.shape[seq_dim]
    inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2) / dim))
    sinusoid_inp = (
        torch.einsum("i , j -> i j", torch.arange(seq_len), inv_freq)
        .to(x.device)
        .float()
    )
    return torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)


def rotate_every_two(x):
    """
    Example: [a, b, c, d] -> [-b, a, -d, c]
    """
    x1 = x[:, :, :, ::2]
    x2 = x[:, :, :, 1::2]
    x = torch.stack((-x2, x1), axis=-1)
    return x.flatten(-2)  # in einsum notation: rearrange(x, '... d j -> ... (d j)')


def apply_rotary_pos_emb(x, sincos, offset=0):
    sin, cos = map(
        lambda t: t[None, offset : x.shape[1] + offset, None, :].repeat_interleave(
            2, 3
        ),
        sincos,
    )
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


def apply_rotary_pos_emb_new(x, sincos, offset=0):
    sin, cos = map(
        lambda t: t[:, :, None, :].repeat_interleave(2, 3),
        sincos,
    )
    # einsum notation for lambda t: repeat(t[offset:x.shape[1]+offset,:], "n d -> () n () (d j)", j=2)
    return (x * cos) + (rotate_every_two(x) * sin)


class CustomT5Attention(T5Attention):
    def __init__(self, config: T5Config, has_relative_attention_bias=False, pos_enc_type="RPE", attn_type="self", rpe_type="abs"):
        super().__init__(config)

        #self.pos_enc_type = pos_enc_type
        # Alibi-rpe_sbias
        if "-" in pos_enc_type:
            pos_enc_split = pos_enc_type.split("-")
            self.pos_enc_type = pos_enc_split[0]
            self.struct_attn_type = pos_enc_split[1]
        else:
            self.pos_enc_type = pos_enc_type
            self.struct_attn_type = ""

        self.d_head = config.d_kv
        self.attn_type = attn_type
        self.rpe_type = rpe_type
        self.has_relative_attention_bias = has_relative_attention_bias

        if self.pos_enc_type == "RoPE":
            self.rotary_dim = None
            if getattr(config, "rotary_dim", None) is not None:
                self.rotary_dim = config.rotary_dim
            self.rotary_dim = int(0.25 * self.d_head)

        # Get the device from the configuration
        #device = torch.device("cuda" if torch.cuda.is_available() and config.device == 'cuda' else "cpu")
        if self.pos_enc_type != "RPE":
            self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
            device = self.relative_attention_bias.weight.device

        #print(f"has_relative_attention_bias:{has_relative_attention_bias}")
        if self.has_relative_attention_bias:
            if self.pos_enc_type == "RPE":
                self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
            elif self.pos_enc_type in ["Alibi","APEAlibi"]:
                #print(f"device:{device}")
                if self.struct_attn_type == "duo":
                    self.slopes_l = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
                    self.slopes_r = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
                elif self.struct_attn_type == "rpe_sbias":
                    self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
                    self.struct_slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
                else:
                    self.slopes = torch.Tensor(self.get_slopes(self.n_heads)).to(device)*-1
            elif self.pos_enc_type == "KerpleLog":
                self.eps = 1e-2
                self.bias_p = self.get_kerple_parameter(2, 'uniform',device)
                self.bias_a = self.get_kerple_parameter(1, 'uniform',device)
            elif self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]:
                #self.relative_attention_bias = None  # No positional encoding bias
                pass
            else:
                self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads)
        # Add more types if necessary

    # Allocate weights and initialize.
    # The kernel has the form -p*log(1+a*|m-n|)
    def get_kerple_parameter(self,scale, init_method, device):
        if init_method == 'ones':
            return Parameter(torch.ones(
                            self.n_heads,
                            device=device,
                            )[:,None,None]*scale )
        elif init_method == 'uniform':
            return Parameter(torch.rand(
                            self.n_heads,
                            device=device,
                            )[:,None,None]*scale )

    # https://github.com/ofirpress/attention_with_linear_biases/issues/5
    def get_slopes(self, n):
        def get_slopes_power_of_2(n):
            start = (2**(-2**-(math.log2(n)-3)))
            ratio = start
            return [start*ratio**i for i in range(n)]

        if math.log2(n).is_integer():
            return get_slopes_power_of_2(n)                   #In the paper, we only train models that have 2^a heads for some a. This function has
        else:                                                 #some good properties that only occur when the input is a power of 2. To maintain that even
            closest_power_of_2 = 2**math.floor(math.log2(n))  #when the number of heads is not a power of 2, we use this workaround.
            return get_slopes_power_of_2(closest_power_of_2) + self.get_slopes(2*closest_power_of_2)[0::2][:n-closest_power_of_2]

    def compute_struct_bias(self, query_length, key_length, device=None, relative_position=None):
        """Compute binned relative position bias"""
        if device is None:
            device = self.relative_attention_bias.weight.device

        #print("#### Compute bias")
        if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]:
            return torch.zeros((1, self.n_heads, query_length, key_length), device=device)
        #elif self.pos_enc_type == "Alibi":
        elif self.pos_enc_type in ["Alibi","APEAlibi"]:
            if self.struct_attn_type == "duo":
                if relative_position is None:
                    context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
                    memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
                    relative_position = memory_position - context_position  # shape (query_length, key_length)

                if self.rpe_type == "abs":
                    relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
                else:
                    relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)

                self.slopes_l = self.slopes_l.to(device)
                self.slopes_r = self.slopes_r.to(device)

                alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position
                alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position

                values = torch.triu(alibi_right) + torch.tril(alibi_left)
                values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length)
                return values
            else:
                if relative_position is None:
                    context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
                    memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
                    relative_position = memory_position - context_position  # shape (query_length, key_length)
                #else:
                    #Simple case here, every tree has the same distance matrix
                    #relative_position = relative_position.repeat(1, self.n_heads, 1, 1)

                if self.rpe_type == "abs":
                    relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
                else:
                    relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)

                #print(f"relative_position.shape:{relative_position.shape}")
                #print(f"relative_position:{relative_position}")
                self.struct_slopes = self.struct_slopes.to(device)

                values = self.struct_slopes.unsqueeze(1).unsqueeze(1) * relative_position
                values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length)
                return values
        elif self.pos_enc_type == "KerpleLog":
            if relative_position is None:
                context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
                memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
                relative_position = memory_position - context_position  # shape (query_length, key_length)
            if self.rpe_type == "abs":
                relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
            else:
                relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)

            self.bias_p.data = self.bias_p.data.clamp(min=self.eps)
            self.bias_a.data = self.bias_a.data.clamp(min=self.eps)

            self.bias_p = self.bias_p.to(device)
            self.bias_a = self.bias_a.to(device)

            values = -self.bias_p*torch.log(1+self.bias_a*relative_position) # log kernel # shape (num_heads, query_length, key_length)
            values = values.unsqueeze(0) # shape (1, num_heads, query_length, key_length)
            return values
        else:
            #context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
            #memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
            #relative_position = memory_position - context_position  # shape (query_length, key_length)
            if relative_position is None:
                context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
                memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
                relative_position = memory_position - context_position  # shape (query_length, key_length)
            relative_position_bucket = self._relative_position_bucket(
                relative_position,  # shape (query_length, key_length)
                bidirectional=(not self.is_decoder),
                num_buckets=self.relative_attention_num_buckets,
                max_distance=self.relative_attention_max_distance,
            )
            values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
            values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
            return values

    def compute_bias(self, query_length, key_length, device=None, relative_position=None):
        """Compute binned relative position bias"""
        if device is None:
            device = self.relative_attention_bias.weight.device

        #print("query_length",query_length)
        #print("key_length",key_length)

        #print("#### Compute bias")
        if self.pos_enc_type in ["NoPE", "LearnedAPE", "SinusoidalAPE","SinusoidalAPE2D", "RoPE"]:
            return torch.zeros((1, self.n_heads, query_length, key_length), device=device)
        #elif self.pos_enc_type == "Alibi":
        elif self.pos_enc_type in ["Alibi","APEAlibi"]:
            if self.struct_attn_type == "duo":
                relative_position = relative_position.to(device)

                if self.rpe_type == "abs":
                    relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
                else:
                    relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)

                self.slopes_l = self.slopes_l.to(device)
                self.slopes_r = self.slopes_r.to(device)

                alibi_left = self.slopes_l.unsqueeze(1).unsqueeze(1) * relative_position
                alibi_right = self.slopes_r.unsqueeze(1).unsqueeze(1) * relative_position

                values = torch.triu(alibi_right) + torch.tril(alibi_left)
                # Slice the relevant part of the bias before reshaping
                values = values[:, :query_length, :key_length]  # Slicing the tensor before reshaping

                values = values.view(1, self.n_heads, query_length, key_length)  # shape (1, num_heads, query_length, key_length)
                #print(f"values.shape:{values.shape}")

                return values
            else:
                if relative_position is None:
                    context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
                    memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
                    relative_position = memory_position - context_position  # shape (query_length, key_length)
                #else:
                    #Simple case here, every tree has the same distance matrix
                    #relative_position = relative_position.repeat(1, self.n_heads, 1, 1)

                if self.rpe_type == "abs":
                    relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
                else:
                    relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)

                #print(f"relative_position.shape:{relative_position.shape}")
                #print(f"relative_position:{relative_position}")
                self.slopes = self.slopes.to(device)

                values = self.slopes.unsqueeze(1).unsqueeze(1) * relative_position
                values = values.view(1, self.n_heads, query_length, key_length) # shape (1, num_heads, query_length, key_length)
                return values
        elif self.pos_enc_type == "KerpleLog":
            if relative_position is None:
                context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
                memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
                relative_position = memory_position - context_position  # shape (query_length, key_length)
            if self.rpe_type == "abs":
                relative_position = torch.abs(relative_position).unsqueeze(0).expand(self.n_heads, -1,-1)
            else:
                relative_position = relative_position.unsqueeze(0).expand(self.n_heads, -1,-1)

            self.bias_p.data = self.bias_p.data.clamp(min=self.eps)
            self.bias_a.data = self.bias_a.data.clamp(min=self.eps)

            self.bias_p = self.bias_p.to(device)
            self.bias_a = self.bias_a.to(device)

            values = -self.bias_p*torch.log(1+self.bias_a*relative_position) # log kernel # shape (num_heads, query_length, key_length)
            values = values.unsqueeze(0) # shape (1, num_heads, query_length, key_length)
            return values
        else:
            #context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
            #memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
            #relative_position = memory_position - context_position  # shape (query_length, key_length)
            if relative_position is None:
                context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None]
                memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :]
                relative_position = memory_position - context_position  # shape (query_length, key_length)
            relative_position_bucket = self._relative_position_bucket(
                relative_position,  # shape (query_length, key_length)
                bidirectional=(not self.is_decoder),
                num_buckets=self.relative_attention_num_buckets,
                max_distance=self.relative_attention_max_distance,
            )
            values = self.relative_attention_bias(relative_position_bucket)  # shape (query_length, key_length, num_heads)
            values = values.permute([2, 0, 1]).unsqueeze(0)  # shape (1, num_heads, query_length, key_length)
            return values

    def forward(
        self,
        hidden_states,
        mask=None,
        key_value_states=None,
        position_bias=None,
        past_key_value=None,
        layer_head_mask=None,
        query_length=None,
        use_cache=False,
        output_attentions=False,
        relative_position=None,
        struct_position_bias=None,
    ):
        """
        Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states).
        """
        # Input is (batch_size, seq_length, dim)
        # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length)
        # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head)
        batch_size, seq_length = hidden_states.shape[:2]


        real_seq_length = seq_length

        if past_key_value is not None:
            if len(past_key_value) != 2:
                raise ValueError(
                    f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states"
                )
            real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length

        key_length = real_seq_length if key_value_states is None else key_value_states.shape[1]


        def shape(states):
            """projection"""
            return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2)

        def unshape(states):
            """reshape"""
            return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim)

        def project(hidden_states, proj_layer, key_value_states, past_key_value):
            """projects hidden states correctly to key/query states"""
            if key_value_states is None:
                # self-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(hidden_states))
            elif past_key_value is None:
                # cross-attn
                # (batch_size, n_heads, seq_length, dim_per_head)
                hidden_states = shape(proj_layer(key_value_states))

            if past_key_value is not None:
                if key_value_states is None:
                    # self-attn
                    # (batch_size, n_heads, key_length, dim_per_head)
                    hidden_states = torch.cat([past_key_value, hidden_states], dim=2)
                elif past_key_value.shape[2] != key_value_states.shape[1]:
                    # checking that the `sequence_length` of the `past_key_value` is the same as
                    # the provided `key_value_states` to support prefix tuning
                    # cross-attn
                    # (batch_size, n_heads, seq_length, dim_per_head)
                    hidden_states = shape(proj_layer(key_value_states))
                else:
                    # cross-attn
                    hidden_states = past_key_value
            return hidden_states

        #print(f"\nattn_type:{self.attn_type}")
        #print(f"hidden_states.shape:{hidden_states.shape}")
        #if key_value_states is not None:
        #    print(f"key_value_states.shape:{key_value_states.shape}")
        #if past_key_value is not None:
        #    print(f"past_key_value[0].shape:{past_key_value[0].shape}")

        # get query states
        query_states = shape(self.q(hidden_states))  # (batch_size, n_heads, seq_length, dim_per_head)
        #print(f"query_states.shape (before RoPE): {query_states.shape}")  # Check shape before RoPE

        # get key/value states
        if self.pos_enc_type == "RoPE":
            #key_states = shape(self.k(hidden_states))
            #findme
            key_states = project(
                hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
            )

            #print(f"key_states2.shape (before RoPE): {key_states2.shape}")
        else:
            key_states = project(
                hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None
            )

        #print(f"key_states.shape (before RoPE): {key_states.shape}")

        value_states = project(
            hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None
        )

        attention_output_dict = {}

        #print(f"orig, key_states.shape:{key_states.shape}")
        #print(f"orig, query_states.shape:{query_states.shape}")

        #print(f"has_relative_attention_bias:{self.has_relative_attention_bias}")
        #print(f"attn_type:{self.attn_type}")
        #print(f"pos_enc_type:{self.pos_enc_type}")
        #print(f"rpe_type:{self.rpe_type}")

        if self.pos_enc_type == "RoPE":
            r_seq_len = hidden_states.shape[1]
            r_offset = 0

            if past_key_value is not None:
                # This is considering seq2seq auto-regressive generation case, while the absolute position is offset by + input_len
                # Can be turned off to test
                #print(f"past_key_value[0].shape:{past_key_value[0].shape}")
                r_offset = past_key_value[0].shape[2]
                r_seq_len += r_offset

            query_states = query_states.permute(0, 2, 1, 3)
            key_states = key_states.permute(0, 2, 1, 3)

            if self.rotary_dim is not None:

                k_rot = key_states[:, :, :, : self.rotary_dim]
                k_pass = key_states[:, :, :, self.rotary_dim :]

                q_rot = query_states[:, :, :, : self.rotary_dim]
                q_pass = query_states[:, :, :, self.rotary_dim :]

                sincos = fixed_pos_embedding(k_rot, 1, seq_len=r_seq_len)
                k_rot = apply_rotary_pos_emb(k_rot, sincos, offset=r_offset)
                q_rot = apply_rotary_pos_emb(q_rot, sincos, offset=r_offset)

                if output_attentions:
                    scores_pass = torch.matmul(
                        q_pass.permute(0, 2, 1, 3),
                        k_pass.permute(0, 2, 1, 3).transpose(3, 2),
                    )
                    attention_output_dict["scores_pass"] = scores_pass

                    scores_rot = torch.matmul(
                        q_rot.permute(0, 2, 1, 3),
                        k_rot.permute(0, 2, 1, 3).transpose(3, 2),
                    )
                    attention_output_dict["scores_rot"] = scores_rot

                key_states = torch.cat([k_rot, k_pass], dim=-1)
                query_states = torch.cat([q_rot, q_pass], dim=-1)
            else:
                sincos = fixed_pos_embedding(key_states, 1, seq_len=r_seq_len)
                key_states = apply_rotary_pos_emb(key_states, sincos, offset=r_offset)
                query_states = apply_rotary_pos_emb(
                    query_states, sincos, offset=r_offset
                )

            #print(f"inner,before_permute, key_states.shape:{key_states.shape}")
            #print(f"inner,before_permute, query_states.shape:{query_states.shape}")
            """
            inner,before_permute, key_states.shape:torch.Size([1, 2, 8, 64])
            inner,before_permute, query_states.shape:torch.Size([1, 1, 8, 64])
            """

            query_states = query_states.permute(0, 2, 1, 3)
            key_states = key_states.permute(0, 2, 1, 3)

            #Ignore this if it's already taken care of in project(hidden_states, proj_layer, key_value_states, past_key_value)
            """
            if past_key_value is not None:
                print(f"past_key_value[0].shape before concat: {past_key_value[0].shape}")
                key_states = torch.cat([past_key_value[0], key_states], dim=2)
            """

            #print(f"inner, key_states.shape:{key_states.shape}")
            #print(f"inner, key_states.transpose(3, 2).shape:{key_states.transpose(3, 2).shape}")
            #print(f"inner, query_states.shape:{query_states.shape}")
            """
            # At decoder for 3rd token self-attn
            attn_type:self
            hidden_states.shape:torch.Size([1, 1, 128])
            query_states.shape (before RoPE): torch.Size([1, 8, 1, 64])
            key_states.shape (before RoPE): torch.Size([1, 8, 2, 64])
            orig, key_states.shape:torch.Size([1, 8, 2, 64])
            orig, query_states.shape:torch.Size([1, 8, 1, 64])
            inner, key_states.shape:torch.Size([1, 8, 3, 64])  <- this should be [1, 8, 2, 64]
            inner, query_states.shape:torch.Size([1, 8, 1, 64])
            scores.shape:torch.Size([1, 8, 1, 3])
            mask.shape:torch.Size([1, 1, 1, 2])
            """


            scores = torch.matmul(
                query_states, key_states.transpose(3, 2)
            )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9

            #print(f"scores.shape:{scores.shape}")
            #scores.shape:torch.Size([480, 8, 64, 64])
            #mask.shape:torch.Size([480, 1, 1, 64])

            # At 1st layer cross attn
            # scores.shape:torch.Size([1, 8, 1, 1])!!! for the first token it could be key_length=1 but why seq_length = 1 ??
            if mask is not None:
                #print(f"mask.shape:{mask.shape}")
                #scores += mask  # (batch_size, n_heads, seq_length, key_length)
                #scores = scores+mask  # (batch_size, n_heads, seq_length, key_length)
                expanded_mask = mask.expand_as(scores) # expand mask tensor to all heads
                #print(f"expanded_mask.shape:{expanded_mask.shape}")
                #print("mask",mask)
                #print("expanded_mask",expanded_mask)
                scores += expanded_mask
                #print("scores",scores)
                #print(f"scores.shape:{scores.shape}")
                #RuntimeError: output with shape [512, 8, 1, 1] doesn't match the broadcast shape [512, 8, 1, 64]

        else:
            # compute scores
            scores = torch.matmul(
                query_states, key_states.transpose(3, 2)
            )  # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9

            #print(f"scores.shape:{scores.shape}")
            #scores.shape:torch.Size([480, 8, 64, 64])
            #print(f"self.attn_type",self.attn_type)

            if self.struct_attn_type == "rpe_sbias":
                if struct_position_bias is None:
                    if not self.has_relative_attention_bias:
                        #print("not has_relative_attention_bias")
                        struct_position_bias = torch.zeros(
                            (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
                        )
                        if self.gradient_checkpointing and self.training:
                            struct_position_bias.requires_grad = True
                    else:
                        struct_position_bias = self.compute_struct_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position)

                    # if key and values are already calculated
                    # we want only the last query position bias
                    if past_key_value is not None:
                        struct_position_bias = struct_position_bias[:, :, -hidden_states.size(1) :, :]

                    #print("struct_position_bias.shape:", position_bias.shape)
                    #struct_position_bias.shape: torch.Size([1, 8, 64, 64])
                    if mask is not None:
                        #print(f"mask.shape:{mask.shape}")
                        #mask.shape:torch.Size([480, 1, 1, 64])
                        struct_position_bias = struct_position_bias + mask  # (batch_size, n_heads, seq_length, key_length)
                        #print(f"position_bias.shape:{position_bias.shape}")
                        # torch.Size([480, 8, 64, 64])

                if self.pruned_heads:
                    mask = torch.ones(struct_position_bias.shape[1])
                    mask[list(self.pruned_heads)] = 0
                    struct_position_bias_masked = struct_position_bias[:, mask.bool()]
                else:
                    struct_position_bias_masked = struct_position_bias

                #print(f"struct_position_bias.shape:{struct_position_bias.shape}")
                #print(f"struct_position_bias_masked.shape:{struct_position_bias_masked.shape}")

            if position_bias is None:
                if not self.has_relative_attention_bias:
                    #print("not has_relative_attention_bias")
                    position_bias = torch.zeros(
                        (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype
                    )
                    if self.gradient_checkpointing and self.training:
                        position_bias.requires_grad = True
                else:
                    if self.pos_enc_type in ["Alibi","APEAlibi"]:
                        position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=relative_position)
                    else:
                        if self.struct_attn_type == "rpe_sbias":
                            position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None)
                        else:
                            position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device, relative_position=None)
                #print(f"position_bias1.shape:{position_bias.shape}")

                # if key and values are already calculated
                # we want only the last query position bias
                if past_key_value is not None:
                    position_bias = position_bias[:, :, -hidden_states.size(1) :, :]

                #print(f"position_bias2.shape:{position_bias.shape}")

                #print("position_bias.shape:", position_bias.shape)
                #position_bias.shape: torch.Size([1, 8, 64, 64])
                if mask is not None:
                    #print(f"mask.shape:{mask.shape}")
                    #mask.shape:torch.Size([480, 1, 1, 64])
                    position_bias = position_bias + mask  # (batch_size, n_heads, seq_length, key_length)
                    #print(f"masked position_bias.shape:{position_bias.shape}")
                    # torch.Size([480, 8, 64, 64])

                #print(f"position_bias3.shape:{position_bias.shape}")

            if self.pruned_heads:
                mask = torch.ones(position_bias.shape[1])
                mask[list(self.pruned_heads)] = 0
                position_bias_masked = position_bias[:, mask.bool()]
            else:
                position_bias_masked = position_bias

            #print(f"position_bias.shape:{position_bias.shape}")
            #print(f"position_bias_masked.shape:{position_bias_masked.shape}")
            #print(f"scores.shape:{scores.shape}")

            if self.struct_attn_type == "rpe_sbias" and self.attn_type == "self":
                scores += position_bias_masked + struct_position_bias_masked
            else:
                scores += position_bias_masked

        attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(
            scores
        )  # (batch_size, n_heads, seq_length, key_length)
        attn_weights = nn.functional.dropout(
            attn_weights, p=self.dropout, training=self.training
        )  # (batch_size, n_heads, seq_length, key_length)

        # Mask heads if we want to
        if layer_head_mask is not None:
            attn_weights = attn_weights * layer_head_mask

        attn_output = unshape(torch.matmul(attn_weights, value_states))  # (batch_size, seq_length, dim)
        attn_output = self.o(attn_output)

        present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None
        """
        if self.struct_attn_type == "rpe_sbias":
            outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,)
        else:
            outputs = (attn_output,) + (present_key_value_state,) + (position_bias,)
        """

        outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + (struct_position_bias,)

        if output_attentions:
            outputs = outputs + (attn_weights,)
        return outputs


from transformers.models.t5.modeling_t5 import T5LayerSelfAttention, T5LayerCrossAttention
import copy

class CustomT5LayerSelfAttention(T5LayerSelfAttention):
    def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"):
        super().__init__(config, has_relative_attention_bias)
        self.pos_enc_type=pos_enc_type
        self.rpe_type=rpe_type
        self.SelfAttention = CustomT5Attention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, attn_type="self", rpe_type=rpe_type)
        self.is_decoder = config.is_decoder

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
        relative_position=None,
        struct_position_bias=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.SelfAttention(
            normed_hidden_states,
            mask=attention_mask,
            position_bias=position_bias,
            struct_position_bias=struct_position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
            relative_position=relative_position,
        )
        hidden_states = hidden_states + self.dropout(attention_output[0])
        outputs = (hidden_states,) + attention_output[1:]  # add attentions if we output them
        return outputs

class CustomT5LayerCrossAttention(T5LayerCrossAttention):
    def __init__(self, config, pos_enc_type="RPE", rpe_type="abs"):
        super().__init__(config)
        self.pos_enc_type=pos_enc_type
        self.rpe_type=rpe_type
        self.EncDecAttention = CustomT5Attention(config, has_relative_attention_bias=False, pos_enc_type=pos_enc_type, attn_type="cross", rpe_type=rpe_type)
        self.is_decoder = config.is_decoder

    def forward(
        self,
        hidden_states,
        key_value_states,
        attention_mask=None,
        position_bias=None,
        layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        query_length=None,
        output_attentions=False,
        relative_position=None,
        struct_position_bias=None,
    ):
        normed_hidden_states = self.layer_norm(hidden_states)
        attention_output = self.EncDecAttention(
            normed_hidden_states,
            mask=attention_mask,
            key_value_states=key_value_states,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=past_key_value,
            use_cache=use_cache,
            query_length=query_length,
            output_attentions=output_attentions,
            relative_position=relative_position,
            struct_position_bias=struct_position_bias,
        )
        layer_output = hidden_states + self.dropout(attention_output[0])
        outputs = (layer_output,) + attention_output[1:]  # add attentions if we output them
        return outputs

from transformers.models.t5.modeling_t5 import T5Block, T5LayerFF

class CustomT5Block(T5Block):
    def __init__(self, config, has_relative_attention_bias=False, pos_enc_type="RPE", rpe_type="abs"):
        super().__init__(config, has_relative_attention_bias)
        self.pos_enc_type=pos_enc_type
        self.rpe_type=rpe_type
        self.layer = nn.ModuleList()
        self.layer.append(CustomT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, pos_enc_type=pos_enc_type, rpe_type=rpe_type))
        if self.is_decoder:
            self.layer.append(CustomT5LayerCrossAttention(config, pos_enc_type=pos_enc_type, rpe_type=rpe_type))
        self.layer.append(T5LayerFF(config))

    def forward(
        self,
        hidden_states,
        attention_mask=None,
        position_bias=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        encoder_decoder_position_bias=None,
        encoder_decoder_struct_position_bias=None,
        layer_head_mask=None,
        cross_attn_layer_head_mask=None,
        past_key_value=None,
        use_cache=False,
        output_attentions=False,
        return_dict=True,
        relative_position=None,
        struct_position_bias=None,
    ):
        if past_key_value is not None:
            if not self.is_decoder:
                logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.")
            expected_num_past_key_values = 2 if encoder_hidden_states is None else 4

            if len(past_key_value) != expected_num_past_key_values:
                raise ValueError(
                    f"There should be {expected_num_past_key_values} past states. "
                    f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}"
                    f"Got {len(past_key_value)} past key / value states"
                )

            self_attn_past_key_value = past_key_value[:2]
            cross_attn_past_key_value = past_key_value[2:]
        else:
            self_attn_past_key_value, cross_attn_past_key_value = None, None

        self_attention_outputs = self.layer[0](
            hidden_states,
            attention_mask=attention_mask,
            position_bias=position_bias,
            layer_head_mask=layer_head_mask,
            past_key_value=self_attn_past_key_value,
            use_cache=use_cache,
            output_attentions=output_attentions,
            relative_position=relative_position,
            struct_position_bias=struct_position_bias,
        )
        hidden_states, present_key_value_state = self_attention_outputs[:2]
        attention_outputs = self_attention_outputs[2:]  # Keep self-attention outputs and relative position weights

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(hidden_states).any(),
                torch.finfo(hidden_states.dtype).max - 1000,
                torch.finfo(hidden_states.dtype).max,
            )
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        do_cross_attention = self.is_decoder and encoder_hidden_states is not None
        if do_cross_attention:
            # the actual query length is unknown for cross attention
            # if using past key value states. Need to inject it here
            if present_key_value_state is not None:
                query_length = present_key_value_state[0].shape[2]
            else:
                query_length = None

            cross_attention_outputs = self.layer[1](
                hidden_states,
                key_value_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                position_bias=encoder_decoder_position_bias,
                layer_head_mask=cross_attn_layer_head_mask,
                past_key_value=cross_attn_past_key_value,
                query_length=query_length,
                use_cache=use_cache,
                output_attentions=output_attentions,
                struct_position_bias=encoder_decoder_struct_position_bias,
                relative_position=relative_position,
            )
            hidden_states = cross_attention_outputs[0]

            # clamp inf values to enable fp16 training
            if hidden_states.dtype == torch.float16:
                clamp_value = torch.where(
                    torch.isinf(hidden_states).any(),
                    torch.finfo(hidden_states.dtype).max - 1000,
                    torch.finfo(hidden_states.dtype).max,
                )
                hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

            # Combine self attn and cross attn key value states
            if present_key_value_state is not None:
                present_key_value_state = present_key_value_state + cross_attention_outputs[1]

            # Keep cross-attention outputs and relative position weights
            attention_outputs = attention_outputs + cross_attention_outputs[2:]

        # Apply Feed Forward layer
        hidden_states = self.layer[-1](hidden_states)

        # clamp inf values to enable fp16 training
        if hidden_states.dtype == torch.float16:
            clamp_value = torch.where(
                torch.isinf(hidden_states).any(),
                torch.finfo(hidden_states.dtype).max - 1000,
                torch.finfo(hidden_states.dtype).max,
            )
            hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)

        outputs = (hidden_states,)

        if use_cache:
            outputs = outputs + (present_key_value_state,) + attention_outputs
        else:
            outputs = outputs + attention_outputs

        return outputs  # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)


from transformers.models.t5.modeling_t5 import T5Stack
import numpy as np
from pathlib import Path
import logging
import os
logger = logging.getLogger("debug")

class CustomT5Stack(T5Stack):
    def __init__(self, config, embed_tokens=None, pos_enc_type="RPE", rpe_type="abs"):
        super().__init__(config, embed_tokens)
        #self.pos_enc_type=pos_enc_type

        # Alibi-rpe_sbias
        if "-" in pos_enc_type:
            pos_enc_split = pos_enc_type.split("-")
            self.pos_enc_type = pos_enc_split[0]
            self.struct_attn_type = pos_enc_split[1]
        else:
            self.pos_enc_type = pos_enc_type
            self.struct_attn_type = ""

        self.rpe_type=rpe_type
        self.block = nn.ModuleList(
            [CustomT5Block(config, has_relative_attention_bias=bool(i == 0), pos_enc_type=pos_enc_type, rpe_type=rpe_type) for i in range(config.num_layers)]
        )

        self.PE_mixer = VisionTransformerEmbedding(config.d_model, config)
        self.config = config

        if self.pos_enc_type == "LearnedAPE":
            self.wpe = nn.Embedding(2048, config.d_model)
            self.wpe.weight.data.normal_(
                    mean=0.0, std=config.initializer_factor * 1.0
            )

            """
            parent_dir = Path(os.path.dirname(os.path.abspath(__file__)))
            learned_embed_file = parent_dir / "gpt_neo_125m_pos_embed.npy"
            if learned_embed_file.exists():
                logger.info(
                    "Loading position embedding from {}".format(learned_embed_file)
                )

                weight = np.load(str(learned_embed_file))
                self.wpe.weight.data.copy_(torch.from_numpy(weight))
                self.wpe.weight.requires_grad = False
            else:
                self.wpe.weight.data.normal_(
                    mean=0.0, std=config.initializer_factor * 1.0
                )
            """

        if self.pos_enc_type == "SinusoidalAPE":
            self.wpe = FixedAbsolutePositionalEmbedding(config.d_model)
        
        if self.pos_enc_type in ["SinusoidalAPE2D","APEAlibi-duo","APEAlibi"]:
            # 2D APE for encoder and cross attn
            # A norminate obj_id just to test
            if config.use_objidx=="yes":
                self.wpe_obj_enc = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64
                self.wpe_x_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) # 128/4 -> 32
                self.wpe_y_enc = FixedAbsolutePositionalEmbedding(config.d_model/4) # 128/4 -> 32

            # Decoder is the same old 2D
            self.wpe_x = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64
            self.wpe_y = FixedAbsolutePositionalEmbedding(config.d_model/2) # 128/2 -> 64

            # 1D APE for decoder/ non-2d positions
            self.wpe = FixedAbsolutePositionalEmbedding(config.d_model)

        if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]:
            # Calculate relative positions for the 2D grid
            grid_height = self.config.grid_max_height
            grid_width = self.config.grid_max_width
            large_dist = max(grid_height,grid_width)+2
            relative_position_2d = self.calculate_2d_relative_positions(grid_height, grid_width)

            # Create a relative position matrix for the full sequence including <s> and </s>
            total_length = grid_height * grid_width + 2  # +2 for <s> and </s>
            distance_matrix = torch.full((total_length, total_length), fill_value=large_dist)  # 100 as a large distance

            # Assign the 2D relative positions to the correct part of the matrix
            distance_matrix[1:1 + grid_height * grid_width, 1:1 + grid_height * grid_width] = relative_position_2d

            # Optionally handle <s> and </s> relative positions
            distance_matrix[0, :] = large_dist  # <s> is far from everything
            distance_matrix[:, 0] = large_dist
            distance_matrix[-1, :] = large_dist+1  # </s> is far from everything
            distance_matrix[:, -1] = large_dist+1

            self.distance_matrix_2D = distance_matrix
            #self.register_buffer("distance_matrix", self.distance_matrix)

    def calculate_2d_relative_positions(self, grid_height, grid_width):
        # Create grid coordinates
        x_coords, y_coords = torch.meshgrid(
            torch.arange(grid_height, dtype=torch.long),
            torch.arange(grid_width, dtype=torch.long),
            indexing='ij'
        )

        # Flatten the 2D grid coordinates
        x_flat = x_coords.flatten()
        y_flat = y_coords.flatten()

        # Initialize the relative position matrix
        num_positions = grid_height * grid_width
        relative_position = torch.zeros((num_positions, num_positions), dtype=torch.long)

        # Calculate Manhattan distance between each pair of points
        for i in range(num_positions):
            for j in range(num_positions):
                relative_position[i, j] = abs(x_flat[i] - x_flat[j]) + abs(y_flat[i] - y_flat[j])

        return relative_position


    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        inputs_embeds=None,
        head_mask=None,
        cross_attn_head_mask=None,
        past_key_values=None,
        use_cache=None,
        output_attentions=None,
        output_hidden_states=None,
        position_ids=None,
        return_dict=None,
        relative_position=None,
        object_idx=None,
    ):
        # Model parallel
        if self.model_parallel:
            torch.cuda.set_device(self.first_device)
            self.embed_tokens = self.embed_tokens.to(self.first_device)
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(
                f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time"
            )
        elif input_ids is not None:
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            err_msg_prefix = "decoder_" if self.is_decoder else ""
            raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds")

        if self.pos_enc_type in ["Alibi-duo", "Alibi", "APEAlibi-duo", "APEAlibi"]:
            relative_position = self.distance_matrix_2D

        #print(f"input_ids.shape:{input_ids.shape}")
        # Print the shape of the embedding matrix
        #print(f"Embedding matrix shape: {self.embed_tokens.weight.shape}")
        # Print unique values in input_ids
        #unique_input_ids = torch.unique(input_ids)
        #print(f"Unique input IDs: {unique_input_ids}")
        #print(f"Max input ID: {torch.max(unique_input_ids)}")
        #print(f"Min input ID: {torch.min(unique_input_ids)}")

        if inputs_embeds is None:
            if self.embed_tokens is None:
                raise ValueError("You have to initialize the model with valid token embeddings")
            inputs_embeds = self.embed_tokens(input_ids)

        #print(f"inputs_embeds.shape:{inputs_embeds.shape}")

        batch_size, seq_length = input_shape

        # required mask seq length can be calculated via length of past
        mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length
        #print(f"mask_seq_length:{mask_seq_length}")


        # Add 2D position embeddings, but only on input seq
        if self.pos_enc_type in [
            "SinusoidalAPE2D","APEAlibi-duo","APEAlibi"
        ]:
            if self.is_decoder or self.config.use_objidx!="yes":
                if position_ids is not None:
                    position_ids = position_ids.view(-1, input_shape[-1])

                if past_key_values is None:
                    past_length = 0
                else:
                    past_length = past_key_values[0][0].size(-2)

                device = input_ids.device if input_ids is not None else inputs_embeds.device
                if position_ids is None:
                    position_ids = torch.arange(
                        past_length,
                        input_shape[-1] + past_length,
                        dtype=torch.long,
                        device=device,
                    )
                    position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

                #print(f"position_ids.shape:{position_ids.shape}")
                #print(f"position_ids:{position_ids}")

                if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True:
                #if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025:
                    # Desired dimensions for ARC IO, individually
                    # For decoder because we have <pad> as first token
                    rows = self.config.grid_max_height
                    cols = self.config.grid_max_width

                    # Flatten the position_ids tensor to remove batch dimension
                    flat_position_ids = position_ids.view(-1)
                    #print(f"flat_position_ids.shape:{flat_position_ids.shape}")
                    #print(f"flat_position_ids:{flat_position_ids}")

                    # Generate position_ids_x
                    position_ids_x = torch.arange(cols, device=device).repeat(rows)

                    # Generate position_ids_y
                    position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols)

                    # Handling batch size, repeat for each batch
                    batch_size = position_ids.shape[0]
                    position_ids_x = position_ids_x.repeat(batch_size, 1)
                    position_ids_y = position_ids_y.repeat(batch_size, 1)

                    #position_embeds = self.wpe(position_ids)
                    position_embeds_x = self.wpe_x(position_ids_x)
                    position_embeds_y = self.wpe_y(position_ids_y)
                    #print(f"position_embeds_x.shape:{position_embeds_x.shape}")

                    #position_embeds
                    position_embeds_2d = torch.cat((position_embeds_x, position_embeds_y), dim=-1)
                    # Apply 1D sinAPE for the <pad> token and tokens beyond 2+1024
                    position_embeds_1d = self.wpe(position_ids)
                    if self.is_decoder:
                        # Combine embeddings
                        position_embeds = position_embeds_1d.clone()
                        #print(f"position_embeds=position_embeds_1d.clone().shape:{position_embeds.shape}")

                        p_seq_len = position_ids.shape[-1]
                        #print(f"p_seq_len:{p_seq_len}")
                        if p_seq_len >= 1123:
                          position_embeds[:, 1:1123] = position_embeds_2d[:, :1122]
                        elif p_seq_len == 1:
                          pos_index = flat_position_ids[0]
                          if pos_index == 0:
                            # <pad> for 1d APE
                            pass
                          elif pos_index>1 and pos_index<=1122:
                            # For model.generate() this will always be 1, but position_ids=(bs, pos_index)
                            position_embeds[:, 0] = position_embeds_2d[:, pos_index-1]
                          else:
                            # > 1025
                            pass
                        else:
                          #print(f"position_embeds.shape:{position_embeds.shape}")
                          #print(f"position_embeds_2d.shape:{position_embeds_2d.shape}")
                          #print(f"position_embeds[:, 1:p_seq_len].shape:{position_embeds[:, 1:p_seq_len].shape}")
                          #print(f"position_embeds_2d[:, :p_seq_len-1].shape:{position_embeds_2d[:, :p_seq_len-1].shape}")
                          position_embeds[:, 1:p_seq_len] = position_embeds_2d[:, :p_seq_len-1]
                    else:
                        position_embeds = position_embeds_1d.clone()
                        position_embeds[:, 1:1123] = position_embeds_2d[:, :1122]
                else:
                    # 1D sinAPE
                    position_embeds = self.wpe(position_ids)
            else:
                # if NOT self.is_decoder:
                if position_ids is not None:
                    position_ids = position_ids.view(-1, input_shape[-1])

                if past_key_values is None:
                    past_length = 0
                else:
                    past_length = past_key_values[0][0].size(-2)

                device = input_ids.device if input_ids is not None else inputs_embeds.device
                if position_ids is None:
                    position_ids = torch.arange(
                        past_length,
                        input_shape[-1] + past_length,
                        dtype=torch.long,
                        device=device,
                    )
                    position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

                #print(f"position_ids.shape:{position_ids.shape}")
                #print(f"position_ids:{position_ids}")

                if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025 or True:
                #if position_ids.shape[-1] == 1024 or position_ids.shape[-1] == 1025:
                    # Desired dimensions for ARC IO, individually
                    # For decoder because we have <pad> as first token
                    rows = self.config.grid_max_height
                    cols = self.config.grid_max_width

                    # Flatten the position_ids tensor to remove batch dimension
                    flat_position_ids = position_ids.view(-1)
                    #print(f"flat_position_ids.shape:{flat_position_ids.shape}")
                    #print(f"flat_position_ids:{flat_position_ids}")

                    # Generate position_ids_x
                    position_ids_x = torch.arange(cols, device=device).repeat(rows)

                    # Generate position_ids_y
                    position_ids_y = torch.arange(rows, device=device).repeat_interleave(cols)

                    # Handling batch size, repeat for each batch
                    batch_size = position_ids.shape[0]
                    position_ids_x = position_ids_x.repeat(batch_size, 1)
                    position_ids_y = position_ids_y.repeat(batch_size, 1)

                    # Get the object embeddings
                    object_embeds = self.wpe_obj_enc(object_idx[:, 1:-1])  # Assuming `object_idx` is passed in
                    #print(f"object_idx.shape:{object_idx.shape}")
                    #print(f"object_embeds.shape:{object_embeds.shape}")

                    #position_embeds = self.wpe(position_ids)
                    position_embeds_x = self.wpe_x_enc(position_ids_x)
                    #print(f"position_ids_x.shape:{position_ids_x.shape}")
                    #print(f"position_embeds_x.shape:{position_embeds_x.shape}")
                    position_embeds_y = self.wpe_y_enc(position_ids_y)

                    # Expand position_embeds_x and position_embeds_y to match the batch size
                    position_embeds_x = position_embeds_x.expand(object_embeds.size(0), -1, -1)  # Expand along the batch size
                    position_embeds_y = position_embeds_y.expand(object_embeds.size(0), -1, -1)  # Expand along the batch size

                    #position_embeds
                    #position_embeds_2d = torch.cat((position_embeds_x, position_embeds_y), dim=-1)
                    position_embeds_2d = torch.cat((object_embeds, position_embeds_x, position_embeds_y), dim=-1)

                    # Apply 1D sinAPE for the <pad> token and tokens beyond 2+1024
                    position_embeds_1d = self.wpe(position_ids)
                    position_embeds_1d = position_embeds_1d.expand(object_embeds.size(0), -1, -1)  # Expand along the batch size

                    position_embeds = position_embeds_1d.clone()
                    position_embeds[:, 1:1123] = position_embeds_2d[:, :1122]
                else:
                    # 1D sinAPE
                    position_embeds = self.wpe(position_ids)

            #print(f"position_embeds.shape:{position_embeds.shape}")
            #print(f"position_embeds:{position_embeds}")
            #inputs_embeds += position_embeds
            inputs_embeds = self.PE_mixer(inputs_embeds, position_embeds)

        if self.pos_enc_type in [
            "SinusoidalAPE",
            "LearnedAPE",
        ]:
            if position_ids is not None:
                position_ids = position_ids.view(-1, input_shape[-1])

            if past_key_values is None:
                past_length = 0
            else:
                past_length = past_key_values[0][0].size(-2)

            device = input_ids.device if input_ids is not None else inputs_embeds.device
            if position_ids is None:
                position_ids = torch.arange(
                    past_length,
                    input_shape[-1] + past_length,
                    dtype=torch.long,
                    device=device,
                )
                position_ids = position_ids.unsqueeze(0).view(-1, input_shape[-1])

            #print(f"position_ids.shape:{position_ids.shape}")
            position_embeds = self.wpe(position_ids)
            #print(f"position_embeds.shape:{position_embeds.shape}")
            inputs_embeds += position_embeds

            if self.struct_attn_type == "ape_sbias":
                # Extra APE, naive trial
                if relative_position is not None:
                    struct_position_ids = relative_position.view(-1, input_shape[-1])
                    #print(relative_position)
                    #print(f"struct_position_ids.shape:{struct_position_ids.shape}")
                    #print(struct_position_ids)
                    struct_position_embeds = self.wpe(struct_position_ids)
                    #print(f"struct_position_embeds.shape:{struct_position_embeds.shape}")
                    inputs_embeds += struct_position_embeds

        if use_cache is True:
            if not self.is_decoder:
                raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder")

        # initialize past_key_values with `None` if past does not exist
        if past_key_values is None:
            past_key_values = [None] * len(self.block)

        if attention_mask is None:
            attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device)

        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
        extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(
                    encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long
                )
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_extended_attention_mask = None

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        # Prepare head mask if needed
        head_mask = self.get_head_mask(head_mask, self.config.num_layers)
        cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers)
        present_key_value_states = () if use_cache else None
        all_hidden_states = () if output_hidden_states else None
        all_attentions = () if output_attentions else None
        all_cross_attentions = () if (output_attentions and self.is_decoder) else None
        position_bias = None
        struct_position_bias = None
        encoder_decoder_position_bias = None
        encoder_decoder_struct_position_bias = None

        hidden_states = self.dropout(inputs_embeds)

        for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
            layer_head_mask = head_mask[i]
            cross_attn_layer_head_mask = cross_attn_head_mask[i]
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if position_bias is not None:
                    position_bias = position_bias.to(hidden_states.device)
                if struct_position_bias is not None:
                    struct_position_bias = struct_position_bias.to(hidden_states.device)
                if encoder_hidden_states is not None:
                    encoder_hidden_states = encoder_hidden_states.to(hidden_states.device)
                if encoder_extended_attention_mask is not None:
                    encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device)
                if encoder_decoder_position_bias is not None:
                    encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device)
                if encoder_decoder_struct_position_bias is not None:
                    encoder_decoder_struct_position_bias = encoder_decoder_struct_position_bias.to(hidden_states.device)
                if layer_head_mask is not None:
                    layer_head_mask = layer_head_mask.to(hidden_states.device)
                if cross_attn_layer_head_mask is not None:
                    cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                layer_outputs = self._gradient_checkpointing_func(
                    layer_module.forward,
                    hidden_states,
                    extended_attention_mask,
                    position_bias,
                    encoder_hidden_states,
                    encoder_extended_attention_mask,
                    encoder_decoder_position_bias,
                    layer_head_mask,
                    cross_attn_layer_head_mask,
                    None,  # past_key_value is always None with gradient checkpointing
                    use_cache,
                    output_attentions,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask=extended_attention_mask,
                    position_bias=position_bias,
                    struct_position_bias=struct_position_bias,  # Pass the struct_position_bias to the layer
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_extended_attention_mask,
                    encoder_decoder_position_bias=encoder_decoder_position_bias,
                    encoder_decoder_struct_position_bias=encoder_decoder_struct_position_bias,
                    layer_head_mask=layer_head_mask,
                    cross_attn_layer_head_mask=cross_attn_layer_head_mask,
                    past_key_value=past_key_value,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                    relative_position=relative_position,  # Pass the relative_position to the layer
                )

            # layer_outputs is a tuple with:
            # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights)
            # hidden-states, key-value-states, (self-attention position bias), (self-attention struct position bias), (self-attention weights),
            #                                  (cross-attention position bias), (cross-attention struct position bias), (cross-attention weights)
            if use_cache is False:
                layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:]

            hidden_states, present_key_value_state = layer_outputs[:2]

            # We share the position biases between the layers - the first layer store them
            # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights),
            # (cross-attention position bias), (cross-attention weights)
            position_bias = layer_outputs[2]
            struct_position_bias = layer_outputs[3]
            if self.is_decoder and encoder_hidden_states is not None:
                encoder_decoder_position_bias = layer_outputs[5 if output_attentions else 4]
                encoder_decoder_struct_position_bias = layer_outputs[7 if output_attentions else 5]

            # append next layer key value states
            if use_cache:
                present_key_value_states = present_key_value_states + (present_key_value_state,)

            """
            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[3],)
                if self.is_decoder:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[5],)
            """

            if output_attentions:
                all_attentions = all_attentions + (layer_outputs[4],)
                if self.is_decoder:
                    all_cross_attentions = all_cross_attentions + (layer_outputs[6],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.final_layer_norm(hidden_states)
        hidden_states = self.dropout(hidden_states)

        # Add last layer
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [
                    hidden_states,
                    present_key_value_states,
                    all_hidden_states,
                    all_attentions,
                    all_cross_attentions,
                ]
                if v is not None
            )
        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=present_key_value_states,
            hidden_states=all_hidden_states,
            attentions=all_attentions,
            cross_attentions=all_cross_attentions,
        )


from transformers.models.t5.modeling_t5 import T5ForConditionalGeneration, T5Config

import copy
import math
import os
import warnings
from typing import List, Optional, Tuple, Union

import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

from transformers.activations import ACT2FN
from transformers.modeling_outputs import (
    BaseModelOutput,
    BaseModelOutputWithPastAndCrossAttentions,
    Seq2SeqLMOutput,
    Seq2SeqModelOutput,
    Seq2SeqQuestionAnsweringModelOutput,
    Seq2SeqSequenceClassifierOutput,
    TokenClassifierOutput,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS, find_pruneable_heads_and_indices, prune_linear_layer
from transformers.utils import (
    DUMMY_INPUTS,
    DUMMY_MASK,
    add_start_docstrings,
    add_start_docstrings_to_model_forward,
    is_torch_fx_proxy,
    logging,
    replace_return_docstrings,
)
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from transformers.models.t5.configuration_t5 import T5Config

# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
__HEAD_MASK_WARNING_MSG = """
The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently,
`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions.
If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers,
num_heads)`.
"""

class CustomT5ForConditionalGeneration(T5ForConditionalGeneration):
    def __init__(self, config: T5Config, pos_enc_type="RPE", rpe_type="abs"):
        super().__init__(config)
        self.model_dim = config.d_model
        self.pos_enc_type=pos_enc_type
        self.rpe_type=rpe_type

        self.shared = nn.Embedding(config.vocab_size, config.d_model)

        encoder_config = copy.deepcopy(config)
        encoder_config.is_decoder = False
        encoder_config.use_cache = False
        encoder_config.is_encoder_decoder = False
        self.encoder = CustomT5Stack(encoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type)

        decoder_config = copy.deepcopy(config)
        decoder_config.is_decoder = True
        decoder_config.is_encoder_decoder = False
        decoder_config.num_layers = config.num_decoder_layers
        self.decoder = CustomT5Stack(decoder_config, self.shared, pos_enc_type=pos_enc_type, rpe_type=rpe_type)

        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

        # Model parallel
        self.model_parallel = False
        self.device_map = None
 
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        decoder_input_ids: Optional[torch.LongTensor] = None,
        decoder_attention_mask: Optional[torch.BoolTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        decoder_head_mask: Optional[torch.FloatTensor] = None,
        cross_attn_head_mask: Optional[torch.Tensor] = None,
        encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        # customized distance_matrix w.r.t to encoder self-attention
        distance_matrix: Optional[torch.FloatTensor] = None,
        object_idx: Optional[torch.FloatTensor] = None,
        # unlike nlp [0,..n] natural sequence, customized struct_position_indexs
        # For now, just re-use distance_matrix if APE-sbias
        #struct_position_indexs: Optional[torch.FloatTensor] = None,
    ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
            Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ...,
            config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
            labels in `[0, ..., config.vocab_size]`

        Returns:

        Examples:

        ```python
        >>> from transformers import AutoTokenizer, T5ForConditionalGeneration

        >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small")
        >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small")

        >>> # training
        >>> input_ids = tokenizer("The <extra_id_0> walks in <extra_id_1> park", return_tensors="pt").input_ids
        >>> labels = tokenizer("<extra_id_0> cute dog <extra_id_1> the <extra_id_2>", return_tensors="pt").input_ids
        >>> outputs = model(input_ids=input_ids, labels=labels)
        >>> loss = outputs.loss
        >>> logits = outputs.logits

        >>> # inference
        >>> input_ids = tokenizer(
        ...     "summarize: studies have shown that owning a dog is good for you", return_tensors="pt"
        ... ).input_ids  # Batch size 1
        >>> outputs = model.generate(input_ids)
        >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
        >>> # studies have shown that owning a dog is good for you.
        ```"""
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask
        if head_mask is not None and decoder_head_mask is None:
            if self.config.num_layers == self.config.num_decoder_layers:
                warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning)
                decoder_head_mask = head_mask

        # Encode if needed (training, first prediction pass)
        if encoder_outputs is None:
            # Convert encoder inputs in embeddings if needed
            encoder_outputs = self.encoder(
                input_ids=input_ids,
                attention_mask=attention_mask,
                inputs_embeds=inputs_embeds,
                head_mask=head_mask,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=return_dict,
                relative_position=distance_matrix,  # Pass the distance_matrix here
                object_idx=object_idx,
            )
        elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
            encoder_outputs = BaseModelOutput(
                last_hidden_state=encoder_outputs[0],
                hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
                attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
            )

        hidden_states = encoder_outputs[0]

        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)

        if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
            # get decoder inputs from shifting lm labels to the right
            decoder_input_ids = self._shift_right(labels)

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.decoder.first_device)
            hidden_states = hidden_states.to(self.decoder.first_device)
            if decoder_input_ids is not None:
                decoder_input_ids = decoder_input_ids.to(self.decoder.first_device)
            if attention_mask is not None:
                attention_mask = attention_mask.to(self.decoder.first_device)
            if decoder_attention_mask is not None:
                decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device)

        # Decode
        decoder_outputs = self.decoder(
            input_ids=decoder_input_ids,
            attention_mask=decoder_attention_mask,
            inputs_embeds=decoder_inputs_embeds,
            past_key_values=past_key_values,
            encoder_hidden_states=hidden_states,
            encoder_attention_mask=attention_mask,
            head_mask=decoder_head_mask,
            cross_attn_head_mask=cross_attn_head_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        sequence_output = decoder_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.encoder.first_device)
            self.lm_head = self.lm_head.to(self.encoder.first_device)
            sequence_output = sequence_output.to(self.lm_head.weight.device)

        if self.config.tie_word_embeddings:
            # Rescale output before projecting on vocab
            # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586
            sequence_output = sequence_output * (self.model_dim**-0.5)

        lm_logits = self.lm_head(sequence_output)

        loss = None
        if labels is not None:
            loss_fct = CrossEntropyLoss(ignore_index=-100)
            # move labels to correct device to enable PP
            labels = labels.to(lm_logits.device)
            loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
            # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666

        if not return_dict:
            output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs
            return ((loss,) + output) if loss is not None else output

        return Seq2SeqLMOutput(
            loss=loss,
            logits=lm_logits,
            past_key_values=decoder_outputs.past_key_values,
            decoder_hidden_states=decoder_outputs.hidden_states,
            decoder_attentions=decoder_outputs.attentions,
            cross_attentions=decoder_outputs.cross_attentions,
            encoder_last_hidden_state=encoder_outputs.last_hidden_state,
            encoder_hidden_states=encoder_outputs.hidden_states,
            encoder_attentions=encoder_outputs.attentions,
        )