File size: 7,516 Bytes
ded89f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import numpy as np
import sys, os, json
from deap import base, creator, gp, tools, algorithms
from dsl import *
import glob
from dsl import _objects
# Custom type definition (DEAP compatibility)
class GridList(list):
pass
# DEAP GP Setup
creator.create("FitnessMax", base.Fitness, weights=(1.0,))
creator.create("Individual", gp.PrimitiveTree, fitness=creator.FitnessMax)
pset = gp.PrimitiveSetTyped("MAIN", [Grid], Grid)
# Basic Grid primitives (all your previously defined primitives)
pset.addPrimitive(ic_compress2, [Grid], Grid)
pset.addPrimitive(flipy, [Grid], Grid)
pset.addPrimitive(rot90, [Grid], Grid)
pset.addPrimitive(rot180, [Grid], Grid)
pset.addPrimitive(mirrorX, [Grid], Grid)
pset.addPrimitive(mirrorY, [Grid], Grid)
pset.addPrimitive(overlay, [Grid, Grid], Grid)
pset.addPrimitive(set_bg, [int, Grid], Grid)
pset.addPrimitive(ic_connectY, [Grid], Grid)
pset.addPrimitive(ic_connectX, [Grid], Grid)
pset.addPrimitive(ic_compress3, [Grid], Grid)
pset.addPrimitive(ic_erasecol, [int, Grid], Grid)
pset.addPrimitive(left_half, [Grid], Grid)
pset.addPrimitive(right_half, [Grid], Grid)
pset.addPrimitive(top_half, [Grid], Grid)
pset.addPrimitive(repeatX, [Grid], Grid)
pset.addPrimitive(flipx, [Grid], Grid)
pset.addPrimitive(setcol, [Colour, Grid], Grid)
pset.addPrimitive(ic_embed, [Grid, Grid], Grid)
pset.addPrimitive(rot270, [Grid], Grid)
# GridList-based primitives
pset.addPrimitive(ic_splitall, [Grid], GridList)
pset.addPrimitive(ic_composegrowing, [GridList], Grid)
pset.addPrimitive(lambda x: GridList([x]), [Grid], GridList, name="toGridList")
pset.addTerminal(GridList([]), GridList)
pset.addPrimitive(ic_pickunique, [GridList], Grid)
pset.addPrimitive(gravity_right, [Grid], Grid)
pset.addPrimitive(split8, [Grid], GridList)
pset.addPrimitive(ic_makeborder, [Grid], Grid)
pset.addPrimitive(ic_filtercol, [Colour, Grid], Grid)
pset.addPrimitive(ic_invert, [Grid], Grid)
pset.addPrimitive(logical_and, [Grid, Grid], Grid)
pset.addPrimitive(fillobj, [Colour, Grid], Grid)
pset.addPrimitive(topcol, [Grid], Colour)
pset.addPrimitive(rarestcol, [Grid], Colour)
pset.addPrimitive(gravity_down, [Grid], Grid)
pset.addPrimitive(pickcommon, [GridList], Grid)
pset.addPrimitive(swapxy, [Grid], Grid)
pset.addPrimitive(topcol, [Grid], Colour)
pset.addPrimitive(setcol, [Colour, Grid], Grid)
pset.addPrimitive(get_bg, [Grid], Colour)
pset.addPrimitive(rarestcol, [Grid], Colour)
pset.addPrimitive(ic_fill, [Colour, Grid], Grid)
pset.addPrimitive(ic_center, [Grid], Grid)
pset.addPrimitive(countToY, [Count, Colour], Grid)
pset.addPrimitive(countPixels, [Grid], Count)
pset.addPrimitive(ic_splitcols, [Grid], GridList)
pset.addPrimitive(grid_split, [Grid], GridList)
pset.addPrimitive(_objects, [Grid], GridList)
pset.addPrimitive(overlay, [Grid, Grid], Grid)
pset.addPrimitive(stack_no_crop, [GridList], Grid)
pset.addPrimitive(move_down, [Grid], Grid)
pset.addPrimitive(draw_line, [Grid, int], Grid)
pset.addPrimitive(draw_line_slant_up, [Grid, Grid], Grid)
pset.addPrimitive(draw_line_slant_down, [Grid], Grid)
pset.addPrimitive(rarestcol, [Grid], int)
pset.addPrimitive(lambda: 1, [], int, name="int_one")
# Integer terminals
for i in range(1, 10):
pset.addTerminal(i, int)
import operator # needed for operator.attrgetter
toolbox = base.Toolbox()
toolbox.register("compile", gp.compile, pset=pset)
toolbox.register("select", tools.selTournament, tournsize=3)
# Use leaf-biased crossover to avoid excessive tree growth
toolbox.register("mate", gp.cxOnePointLeafBiased, termpb=0.1)
# Mutation setup remains the same
toolbox.register("expr_mut", gp.genFull, min_=0, max_=2)
toolbox.register("mutate", gp.mutUniform, expr=toolbox.expr_mut, pset=pset)
# Explicitly limit tree height to avoid memory errors
MAX_TREE_HEIGHT = 17 # recommended limit
toolbox.decorate("mate", gp.staticLimit(operator.attrgetter("height"), MAX_TREE_HEIGHT))
toolbox.decorate("mutate", gp.staticLimit(operator.attrgetter("height"), MAX_TREE_HEIGHT))
# Population initialization (unchanged)
toolbox.register("population", tools.initRepeat, list,
lambda: creator.Individual(gp.genHalfAndHalf(pset, min_=1, max_=3)))
def evaluate_task(individual, task):
func = toolbox.compile(expr=individual)
total = 0
for example in task['train']:
inp = Grid(np.array(example["input"]))
tgt = Grid(np.array(example["output"]))
try:
out = func(inp)
if out.grid.shape == tgt.grid.shape:
total += np.sum(out.grid == tgt.grid)
except:
pass
return (total,)
toolbox.register("evaluate", evaluate_task)
# Folder containing your tasks
training_folder = "./training/"
task_files = glob.glob(training_folder + "*.json")
results = []
# Evaluate each task separately
for task_file in task_files:
task_name = os.path.basename(task_file)
print(f"Processing {task_name}")
with open(task_file, 'r') as f:
task = json.load(f)
# GP initialization per task
pop = toolbox.population(n=150)
hof = tools.HallOfFame(1)
for gen in range(250): # Adjust number of generations if needed
offspring = algorithms.varAnd(pop, toolbox, cxpb=0.5, mutpb=0.2)
fits = toolbox.map(lambda ind: toolbox.evaluate(ind, task), offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
hof.update(offspring)
pop = toolbox.select(offspring, k=len(pop))
# Evaluate best individual on the test set
best_ind = hof[0]
func = toolbox.compile(expr=best_ind)
correct = False
try:
for test_case in task["test"]:
test_inp = Grid(np.array(test_case["input"]))
expected_out = np.array(test_case["output"])
output_grid = func(test_inp).grid
if np.array_equal(output_grid, expected_out):
correct = True
else:
correct = False
break
except:
correct = False
results.append({
"task_name": task_name,
"best_program": str(best_ind),
"solution_found": correct
})
print(f"{task_name} completed. Solution found: {correct}")
# Save summary results to JSON
with open("tasks_results_summary.json", "w") as f:
json.dump(results, f, indent=2)
print("All tasks processed. Results saved to tasks_results_summary.json.")
# Put everything you already have here...
# And then add this at the bottom:
def run_task(task_path):
with open(task_path, 'r') as f:
task = json.load(f)
pop = toolbox.population(n=150)
hof = tools.HallOfFame(1)
for gen in range(250):
offspring = algorithms.varAnd(pop, toolbox, cxpb=0.5, mutpb=0.2)
fits = toolbox.map(lambda ind: toolbox.evaluate(ind, task), offspring)
for fit, ind in zip(fits, offspring):
ind.fitness.values = fit
hof.update(offspring)
pop = toolbox.select(offspring, k=len(pop))
best_ind = hof[0]
func = toolbox.compile(expr=best_ind)
# We'll just use the first test example for visual output
test_example = task["test"][0]
input_grid = np.array(test_example["input"])
target_grid = np.array(test_example["output"])
try:
output_grid = func(Grid(input_grid)).grid
correct = np.array_equal(output_grid, target_grid)
except:
output_grid = np.zeros_like(input_grid)
correct = False
return str(best_ind), correct, input_grid.tolist(), target_grid.tolist(), output_grid.tolist()
|